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A comparison is made between traditional quantum chemical approaches to the electron correlation problem
and the one taken in density functional theory (DFT). Well-known concepts of DFT, such as the exchange
correlation energ¥x. = fp(r) ex(r) dr and the exchangecorrelation potentialy(r) are related to electron
correlation as described in terms of density matrices and the conditional amplitude (Fermi and Coulomb
holes). The KohaSham one-electron or orbital model of DFT is contrasted with HartFexek, and the
definitions of exchange and correlation in DFT are compared with the traditional ones. The exehange
correlation energy density(r) is decomposed into kinetic and electreglectron potential energy components,

and a practical way of calculating these from accurate wave functions is discussed, which offers a route to
systematic improvementu,(r) is likewise decomposed, and special features (bond midpoint peak, various
types of step behavior) are identified and related to electronic correlation.

1. Introduction tion. The Diophantine method introduced by Eflifas been

There has been in recent years a sharp increase in the numbdhe first 3D numerical integration method applied succesfully

of molecular electronic structure calculations based on density 10 molecular electronic structure calculations, but the problem
functional theory (DFT). Over the years, extensive validation ©f €aying out 3D numerical integration for poyatomic systems

of proposed functionals'® has been carried out for elementary © arbitrary preﬁizslg)n was only 4so|ved in the mid eighties by
second- and third-row molecules (among these the G1 and G2Boerrigter et al*2% and Becke’ The remaining Coulomb
sets}012-27 and for transition-metal complexes and organome- problem (the two-electron integrals “bottleneck”) has been
tallic systemg8-31 for transition states in reactiof%;% and addressed by the introduction of auxiliary basis sets (“density
) ;> and, o 25 .
more recently, for charge-transfer complef®sThe gradient- ~ 11ting”) by Baerendset al* These authors applied the
corrected exchange functional of Beckand the correlation expansion of the density in an auxiliary basis set in combination
functionals of Lee, Yang, and Pdrbased on the Colte with the use of Slater-type orbitals (STOs) and numerical
Salvettf correlation energy expression, and of Perdew and integration of the Fock matrix ele.ments (see for a different,
collaborator&10 prove to be particularly accurate, with often though related, development: Ellis and co-worker® and
even improved accuracy coming from the hybrid functionals Delley?9). In these app.roaches nonstandard basis sets are used
introduced by Beck&25 At the same time the local nature of ~(STOS, numerical atomic orbitals), but Sambe and Feliooted
the effective potential in the one-electron KetBham equations ~ that the density-fitting method could equally well be applied
affords efficient computational schemes. The evaluation of with Gaussian basis sets. This allows one to stick more closely
matrix elements of the KohrSham exchangecorrelation to standard quantum chemistry codes, with analytical integral

potential always requires at some step a 3D numerical integra-€valuations for all operators except the exchangarelation
potential. Dunlaget al32 have formulated a variationally stable

€ Abstract published ilAdvance ACS Abstractsune 1, 1997. form of the density fitting. There is currently a revival of
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interest in these technique®®* and also their applicability in  there is a one-to-one mapping between the poten(ig| the

an ab initio context is being investigate§.56 particle densityp(r), and the ground state wave functitify,
Although the high degree of reliability of the DFT calculations
based on the present functionals, usually referred to as generaI(HK'l) p(r) = o(r) = ¥, (2.1)

ized gradient approximations (GGA), and their computational _ = . .
expedience are well established, still several elements of density! IS IS actually a rather direct consequence of the variational
functional theory that are particularly relevant for molecular Principle. Itimplies that given a potential, the wave function
applications remain relatively unknown among quantum chem- and density that cqrrespond to ,'t are unlquel_y determlned.
ists. There also remain questions regarding the status of CONversely, and this was less intuitively obvious, given a
important ingredients of the theory such as the KeBham density, o_nly one _potent|al _and wave function c_orrespond to
orbitals: are they mere mathematical constructs to build the that density, séPo is a functional ofv and a functional op,
exact (correlated) density from a one-electron model or do the — —

have s(ome physiz:al senge, similar to the Hartféeck orbitals Y o= Wole] = Wole] (2:2)

or to orbitals of more approximate one-electron theories such \ye \jll be concerned with systems of electrons moving in the
as extended Hzkel or to natural orbitals? What is the precise a4 of fixed nuclei, so the external potentialis always just

meaning of the central quantity of DFT, the exchange e nyclear field, the two-particle interaction is 3/ and the
correlation functionalE«? Is it equal to the traditional  4omiltonian is
correlation energy of quantum chemistry (exact minus Hartree
Fock energy) plus the Hartre€ock exchange energy, or plus A=T+V+W (2.3)
the exchange energy evaluated with Ket8ham orbitals, or
again something different? How precisely is correlation incor- 1, o NA 4
porated in a one-electron theory like KohBham? T=)> - EV (i), V= Zv(ri) = ZZR——
We will address these questions from a quantum chemical = = Fd=IR, il

point of view in the sense that we will use the traditional ways A N

in which quantum chemists describe electron correlation: in W= zl/rii
terms of one- and two-electron density matrices and the more =)
pictorial Fermi and Coulomb holes based on them. We Will - The HK theorem implies that all properties are functionals

show that the KohrSham form of density functional theory ¢ the ground state density, since any property may be
can be very simply related to the concepts that quantum chemistSjetermined as the expectation value of the corresponding

have build up over the years to describe the electronic structuregperator O say, and the wave function is determined Ay
of atoms and molecules. We will also demonstrate that there

are ways to systematically improve upon the present day model Olp] = W[ p] |©|1p0[p]|] (2.4)
functionals in case they would fail (which fortunately does not
often seem to be the case). Itis possible to construct rigorouslyIn particular the kinetic energy is also a functional of the density,
correct exchangecorrelation energy densities and Kehham T[p], as is the electronelectron interaction energip]. These
potentials, to which one might take recourse in order to construct functionals are called universal since they do not contain the
improved models might the current ones fail. external potentiad explicitly, and in principle would only have
This article is structured in the following way. After an to be determined once and for all. However, a functional like
introduction into DFT (section 2) the physics of electronic T[p] does depend on the use of a specific form of the two-
correlation is discussed in section 3 in terms of density matrices particle interactioW. If for instance we would be dealing with
and Fermi and Coulomb holes, and the difference between thenoninteracting particles/f = 0), the ground state wave function
way the Hartree Fock model on the one hand and the Kehn  belonging to a giverp would be a single determinar¥[p],
Sham model on the other hand treats (or fails to treat) the different from the wave functioM/[p] of the fully interacting
correlation is demonstrated. The difference between the defini- system, and the external potentiglcorresponding t@ in the
tion of the correlation energy in the two models is highlighted. case of noninteracting particles would be different from ¢he
In section 4 the decomposition of both the exchangarelation corresponding t in the case of interacting particles. The
energy density,(r) and the exchangecorrelation potential kinetic energy functional for noninteracting particles
vxe(r) into meaningful components is derived. A method is N
proposed to obtain an exact (very accurate) representation of Tdpl = W p]I TV p] (2.5)
these spatial functions from an exact (very accurate) wave )
function. Examples of accurate correlation energy densities andill be different fromT[p]. ,
Kohn—Sham potentials are given for a few simple systems (He, Cléarly the total energy is also a functional of the ground
H, at R, and at large bond distance) in section 5. Section 6 state density. There is, however, a subtle point here: the

finally presents an analysis of the response part of the Kohn ©PeratorO in (2.4) now being the Hamiltonian, we should be
Sham potentialyes? clear about the potential(r) to be used in the Hamiltonian.

There are two main possibilities. If for eaghwe take the
potentialy(r) that corresponds to it according to HK-I, we obtain
the functionaE[p] that yields at eacl the ground state energy
of the unique system having thisas its ground state density.

We present a few aspects of DFT, without any attempt at We note in passing that not much is known about analytic
completeness or rigor (see textbotks?). Just those features  properties (extrema, continuity) &p]. If, on the other hand,
are highlighted that we need in the subsequent development.we take a fixed potential(r), for which Wy is the ground state

For a many-particle system with some two-patrticle interaction, andEp the corresponding ground state energy, and evaluate for
where all particles move in a given local potentigf), and eachp the expectation value of the Hamiltonian with this fixed
with a restriction to systems that have nondegenerate groundv for W[p], we obtain a functionak,[p] which, according to
states, the first Hohenbergohn theorem (HK49) states that the variation theorem, will havEy as lower bound

2. Hohenberg-Kohn and Kohn—Sham Formulations of
Density Functional Theory
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(HK-1)  E,[p] = W[p]|T+V+WWP[p]= E, (2.6)
This theorem was formulated by Hohenberg and K8land is
usually referred to as the second Hohenbdgfghn theorem
(HK-II). For a system of noninteracting electrons and a given
external potentiabs the variationally stable energy functional

would simplify to
Edp] = W ol T+ VW ol =
Tdol + [vdr)e(r) dr = Ej, (2.7)
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to obtain the electronelectron interaction energy one would
need explicit knowledge concerning the conditional probability
to find the remaining electrons around a given one. The HK
theorem broke away from this accepted belief.

Virtually all applications of DFT in quantum chemistry use
the Kohn-Sham one-electron formulation of DFY. We may
introduce it by postulating the existence of an “auxiliary” system
of N noninteractingelectrons moving in an external local
potential, calledvg(r), which has the property that its wave
function—a single Slater determinant of the lowBbrbitals—wiill
yield precisely the same electron density as the exact interacting

At this point one may wonder how much has been achieved €lectron system with potentiai(r). So the Kohr-Sham

since there is no prescription to fiRBg[ p] from a given density,

except the somewhat uninteresting one where one would

determine the number of electrons by integratiop ofer space,
and the positions and charges of the nuclei from the cusps of

so that, the Hamiltonian being determined now, one is back at

the traditional problem of solving the Sclidiager equation.

However, we will see below that even as a mere existence

theorem the HK-I theorem can be quite useful, and it justifies
of course the search for functionals of the density for such
important quantities as the kinetic and electr@fectron
interaction energies.

We may contrast the density functional expression for the
kinetic and electronelectron interaction energies with the
traditional expressions using density matries> It is well
known that knowledge of the complete wave function is not
required to obtain these quantities. For the kinetic energy it is
sufficient to know the one-electron density matrix defined as

Y1) =N W12, NP1 2,..Nd2..N (2.8)

where the diagonal elemep(l;1) = p(1) is the probability to
find an electron with coordinates 1 (position spins;). The
kinetic energy is

T=rdr= [, - %Vz(l)y(l,l') d1 2.9)

and requires thdull one-matrix, including the off-diagonal
elements. The electrerelectron interaction energy may be
written in terms of the diagonal elemeni¥1,2) = I'(1,2;1,2)
of the two-electron density matrix, or two-density for short,

r(1,2;1,2)=
N(N — 1) [W(1,2,3,. N)W*(1',2,3,...N) d3 ... N (2.10)

The diagonall'(1,2) represents the probability to find two
electrons simultaneously at “positions” 1 and 2, and the ratio
I'(1,2)jo(1) represents the conditional probability to find an
electron at 2 when there is known to be one at 1,

p"4211) = I'(1,2)fo(1) (2.11)

and

=1L —
w= W= 2fr12r(1’2) dld2=

1 p""211)
Efoll p(1)fr—12 d2 (2.12)

Hamiltonian is just a sum of one-electron Hamiltonians,

|:isz Zﬁs(l) = Z(_ %vz(i) + Us(ri))
A1)pi(1) = ei(1)
W= [61(1)p5(2) ... op(N)|

N
pdr) = sz(r,snz = ™) (2.13)

One may wonder if there could be many potentig(s) with
the property that their firdil occupied orbital densities sum up
to the exact density. The HK-I theorem, however, proves that
vgr) must be unique. The theorem does not rely on the form
of the two-electron interaction, so alsoW = 0, the theorem
implies that density and potential are one-to-one related. This
proves that((r), if it exists, is unique. Does it always exist?
We refer to the literature for discussions of this so-called
problem of the noninteractings-representability of a density
o(r).67770 Taking the existence of«r) for granted for the
molecules the quantum chemists are usually interested in, we
note that the KohirSham one-electron model takes a position
in DFT that is reminiscent of the one that Hartrdeock takes
in ab initio quantum chemistry. In fact, in some respects it is
more fundamental since it is not (at least not only) the first,
necessarily not exact, step in a sequence of increasingly accurate
wave functions, but it is a one-electron model that is intimately
related to theexactsolution of the many-electron problem. Let
us cite a few properties @f(r) which are relevant in this respect.

(1) wvyr) is a unique local potential connected with the
interacting many-electron system. This point has just been
discussed.

(2) vyr) yields theexactone-electron densitg(r). This is
an important difference with Hartred-ock, which leads to
interesting consequences for the composition of the correlation
energy, as will extensively be discussed below.

(3) enomo = —IP®@t The property that the highest occupied
Kohn—Sham orbital energy is equal to the exact first ionization
energy of the systefh’2is directly related to the fact that the
asymptotic behavior of the density is governed by the first
ionization energy?® If the density is composed of a finite
number of Kohr-Sham orbitals, this asymptotic behavior of
the density is in turn determined by the one-electron energy of
the highest occupied orbital, which necessarily has to be equal
to the IP. This is a property that is very desirable in molecular
orbital (MO)-based perturbation treatments (PMO theory) or

These expressions demonstrate the well-known fact that inin qualitative MO theory in general and is often simply assumed

principle the total wave function, with its complicated depen-

in such theories. Unfortunately, the Koh8ham potentials

dence orN electron coordinates, is not necessary to obtain the derived from the local-density approximation (LDA) or the

energy; the reduced one- and two-matrices are suffiéieft.

current GGA functionals have very poor asymptotic behavior

However, it has for a long time been considered essential thatand lead to an artificial upshift of the one-electron energies by
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typically some 5 eV. This can be remedied by constructing of one-particle states, as so many have been proposed (Hartree

potentials with better asymptotic behaviérwhich is in fact Fock orbitals, natural orbitals, Brueckner orbitals, Dyson
important when considering properties that depend on the theamplitudes), which may very well be used to construct a one-
tail of the density, such as dipdk’éand highef’ polarizabili- determinantal wave functiot/s. Of course this cannot be the

ties. [We note in passing that the upshift of the one-electron exact wave function, and the Kohisham orbitals generally
energies in an LDA or GGA calculation, which persists down serve a different purpose than creating a reasonable single-
to the core levels, implies th&tni¢; has a considerable error.  determinantal wave function, but there is no reason to shy away
On the other hand, the total energy in the GGA approximation from this Kohn—Sham determinantal wave function any more
does not nearly exhibit such a large error (see the comparisonthan,e.g, from the Hartree-Fock wave function.
between GGA errors ia and inEg in ref 78). If one writes
the total energy ag nie; minus correction terms for double- 3. The Physics of Correlation and the Hartree-Fock and
counting of electrorrelectron interactiorE = Snie; — /p(1)p- Kohn—Sham One-Electron Theories
(2)/r12 d1 d2 + (Exc — fpvxc dr), this implies that there is a
compensating error in the other terms. In view of the deficien-
cies in the GGA approximation to the response part of the E=0 Ve WO
exchange-correlation potential® the compensating error most
probably involves the term- fpv"®SPdr, which is part of Exc _ 1. )
— [puxe dr). See below for definition and discussion of these — f1~1’ 5V Q)y(@.1)dl+ fp(r)u(r) dr +
quantities.] 1,1

(4) eLumo (and all other virtual orbital energies) are solutions Efr_lz I'(1,.2)d1d2 (3.1)
in exactly the same potential as the occupied orbitals. They

are therefore not upshifted in the same way as HartFeek We may break down the correlated probabili§l,2) of finding
virtual orbitals are. HartreeFock orbital energy differences o electrons at 1 and 2 into the independent particle part, which
are not estimates of excitation energies, they have to bejs just the product of the one-electron probabiliiés)e(2) and

combined with appropriatd andK integrals®®> The Kohn- 4 remainder which can be called the exchangarelation part
Sham orbital energy differences, however, play a role as a first of T,

approximation to the excitation energy in the treatment of
excitation energies using time-dependent DE®2 It has [(1,2)= p(L)p(2) + T, (1,2) (3.2)
actually been observed empirically for a long time that these ’ X
orbital energy differences are good approximations to excitation

energies, and some very interesting observations concerning the Whef‘.a“ Sisctronl_s known to be at position 1, the conditional
relationship between virtual-occupied Koh8ham orbital probability p"{2|1) = ['(L,2)/p(1) of the other electrons to be

energy differences and excitation energies have recently beenat position 2 around the reference electron at position 1 can be

made®® At this point we leave it at noting that the virtual written as the sum of the unconditional probability (the electron

Kohn—Sham orbital energies may serve well in qualitative MO density)p(2) and the exchangecorrelation hole
considerations. Their precise relationship with excitation ener-

The exact total energy may be written as

: ; o . I (1,2
gies vv_|II hopefully be cla_1r|f|ed fyrthgr by developments in p°°”d(2|1)= p(2) + xel )= o(2) + p:‘c)'e(le) (3.3)
excitation energy calculations using time-dependent DFT. (1)
(5) vs(r) and components afyr) have remarkable structure, con
such as peaks at intershell regions in atéfng37478a peak at fp @1)d2=N-1

the bond midpoint in a molecufé;®° step behavior in atoms
in going from one shell to the ne&t;%2and step behavior in ~ The hole p'?%2/1) describes how this conditional density
a heteronuclear molecule when going from one atom to the deviates from the unconditional densjt{2). Since the con-
next®® These features are directly related to specific aspects ditional density integrates td — 1 electrons, the hole integrates
of electron correlation. Since the KohSham orbitals andy(r) to —1. More specifically, the integral over all space of the hole
are connected with the exact correlated system, one may looselyin the probability density of electrons with the same spin as the
say that all effects of electron correlation “have been folded” reference electronsf{ = s;) will be —1, and the integral over
into the simple one-electron potent@al(r). It is the purpose all space of the hole in the probability density of electrons with
of this contribution to clarify how exactly this is to be the opposite spinsg = s;) will be 0: fp'%ro,5=s)|1) dry =
understood. —1; fp:‘c"e(rz,szisﬂl) dr, = 0. Due to the Pauli principle,
We conclude this section by noting that the abovementioned which forbids two electrons to be at the same spatial position
properties highly recommend the KohBham orbitals and one-  when they have the same spin, the hole in the density of
electron energies as tools in the traditional qualitative MO electrons with the same spin as the reference electron has, for
considerations on which much of the rationalizations of r,— r1, to become equal to minus the density of electrons with
contemporary chemistry are baséd®® It would be hard to this spin: p'(r,—r1,5=51/1) = —p(1). The precise shape of
find a better MO theoretical context to apply concepts such as the hole depends strongly on the system, but in general in high-
“charge control” and “orbital control” than the KohtSham density regions in atoms and molecules the hole in the density
one-electron model. In case there is some fear that the Kohn of electrons with the same spin as the reference electron will
Sham orbitals mysteriously and uncontrolably deviate from the have largest depth around position 1 and will go to zero far
expected behavior, in terms of bonding and antibonding from 1, where the presence of the reference electron at 1 is no
character and behavior under perturbations (geometrical distor-longer felt. The hole in the density of opposite spin electrons
tions, interaction with other atoms/molecules), we will show will be much smaller. However, in low-density regienar in
below that such fear is unwarranted since the effective one- a low-density electron gaghe hole in the density of opposite
electron potentiabs is physically very appropiate. One may spin electrons may be of comparable depth and extent, although
take the view that the KohnSham orbitals are just another set of course it has to integrate to O rather thaf.



Feature Article

The two-electron part of the total energy may be broken up functionals

accordingly
_ 1,012 _ 1 p(1)p(2)
W= 2] - dld2= zf » d1d2+
1 x(1.2)
> il » d1d2
1 1
=5 P(DVeou(L) d1+ 5 [p(1)efg (L) d1= Weqy + \(N |
3.4

which defines the Coulomb potentidt,y and the exchange
correlation hole potentiall°® at the position 1 of the reference
electron as the potentials of the full electronic deng(®) and
the exchangecorrelation hole density[°%2|1), respectively
(Vcouis sometimes called thdartree potential 4, and another
name for the hole potential',r(‘g"3 is screening potentiabscr
cf9). We note in passing that it is customary in the physics
literature to use the pair correlation facig(l,2), in terms of
which the conditional density, hole density and exchange
correlation part oW, can also be defined

(1,2
p(1)

p°"211) = g(1,2) p(2) = p(2) +

I,(1.2)

r(1)
1 ~p(1)(9(1,2) — 1)p(2)
Efp P

o

PR(2I1) = = (9(1,2)— 1)p(2)

W, = d1 d2 (3.5)
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of the density. So the exchange energy may be
written,

lyd(1,2)°

o

dld2

Wx=—%f

N
7d1.2)= 3 ngi(1)¢(2) (3.79)

The conditional density of the KS determinant will by definition
only have the exchange or Fermi hole, which may be given in
terms of the exchange pdr = —y41,2) y«2,1) by which the
two-electron density matriX’s of the KS determinantal wave
function differs from the independent particle teptl)p(2):

I(12)= p(1)p(2) — 74L.24(2,1)

[ (1.2)= —y{1.2p{2,1)= = |y{1,2)?

—lyd1,2)°

hole, _

_ 1— hole, 1 — 1 hole,
W, =3 [ oLy (2|1)r—12d2 d1=3 [ o(1)7q1) d1 (3.7b)

We work with pure spin orbitalgi(1) = ¢i(r1)oi(s1), where
@i is the spatial part of; ando;, the spin part, is eithex or .
So if ¢i(1) is an up-spin orbitakyi(1) = @i(r1)o(sy), it will be
zero if 1 has down spins{ = —%/,), andvice versa Taking
this into account in the above expressions fefl,2), p!%®

X

The pair correlation factor (in the present definition, which uses |eads immediately to the well-known properties of the Fermi
spatial plus spin coordinates) will be 1, so the hole has zero hole of a one-determinantal wave functidthat it is definite

depth, when 2 is at large distance from 1. It will go ta.e,
the hole gets full depth-p(1), when 2— 1 (includings; = ;)
on account of the Pauli principle. The hole induced in the

negative, consists of the same-spin density as the reference
electron, and has for2- 1 (implying equal spins) a depth equal
to the density of electrons with the same spin as the reference

electron distribution of other spin electrons around an electron electron

at 1 = r1s;, described byg(ris.,ros) with s; = s, need not
have full depth—p(r1s,), corresponding tg(r1S:;r1%=s1) = 0,

since different spin electrons retain some probability to be at

the same position. In fact, in low-density regi@{s:s,r 25:%5s1)
does tend to to 0 for, — ry, but in high-density regions this
is known not to be the case.

Let us now consider the definition of exchange and correlation

in density functional theory. We wish to strongly emphasize

P 2—111) = —p(2) (3.8)
andzerodepth for opposite spin electrons
P r28,78,|1) = 0 (3.9)

The present definition of the exchange energy and the Fermi

that these quantities do not have the same meaning in DFT aghole differs only from the traditional one in that the KS orbitals

in ab initio quantum chemistry.

are used rather than the Hartrdeock orbitals. Still, this leads

Starting with the exchange energy, let us consider the energyt® @ considerable advantage when it comes to defining the

of the Kohn—-Sham determinantal wave functiomge. the
expectation value ofYs with respect to the full Hamiltonian,

A 1
E=WJHW =T+ [pvdr + EfpvCoul dr + W,
(3.6)
This defines the exchange energy of DFT as a Hartree
Fock type exchange energy, but evaluated with the Kdbimam

orbitals. [We continue denoting all purely electreglectron
interaction energy terms wiW, subscripted as the case requires;

correlation or Coulomb hole. It is natural to define as the
Coulomb hole the difference between the exact conditional
density and the conditional density that has been used to define
the Fermi holé® Sincep®dKg2|1) = p(2) + pI"%21), this

is, with the present definitions, equal to the difference between

the full exchangecorrelation hole and the Fermi hole

P21 = p™M211) — o™ 21) =
pl211) — pp74211) (3.10)

X

other names for the exchange energy of DFT, each with its own If we would take Hartree Fock as our reference one-determi-

merits, areEy, or Uy, or Exc =0 OF V’Q}ZO — U.] The kinetic
energy Ts is simply the kinetic energy of the KohrSham
orbitals. Since the exact densjfr) = > sio(1) determines(r)
and therefore the KohnSham (KS) orbitals;Ts and Wy are

nantal state, the difference between the conditional densities
will not just be the difference between the full hole and the
(Hartree-Fock) exchange hole but will include a term describing
the difference between the exact and HartrEeck densities,
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phole,HF(2|1) — pcond(2|1) _ pcond,HF(2|1) - TABLE 1: Contributions (in eV) to the Traditional
¢ . hole - Correlation Energy E." for Selected Molecules
(p(2) = P (2)) + pyc (211) —p " (211) (3.11)

* B T Ve Weuet W

The termAp(2) = p(2) — p"F(2) may not be small (see below), Hz(R=R) -11 413 -0.5 -1.9
in particular when compared to the difference between the full Hz(R=5.0 au) -39 489 -85 —4.4
and exchange holes, and in a way would contaminate the ,\H/IZ (g__ 10.0au) —_13'2 ++3£73'3 _1_185@ +;g'2

finition of the Coulomb correlation hole. Using the definition n=e ' ' ’ '
defini , , - 9 Ni(CO), -34 —350 +147.8 -116.3
(3.10) we write the correlation paiy; of the two-electron Cr(CO) —45 —-45  +30.8 -30.8
energy as He -1.1  +1.1 -0.1 2.1
H0 -7.0 +65 +1.0 —14.5
_ _1 hol 1 _ Ne —8.9 +8.3 +1.3 —18.5
W, =W, = W, =3 [p(1)p" (/1) d2 d1= N2 ~11.1  +137  -138 ~11.0

12
102,103
% (o) d1 3.12)  eNe9Y
E <EF (3.17)

From the definition it is obvious that the Coulomb hole
integrates to zero. Many examples of Fermi and Coulomb holes The correlation energy as defined here consists of only two
are provided in refs 100 and 101, from which certain charac- terms, a kinetic and an electrelectron interaction part,
teristics can be deduced. In atoms, the Coulomb hole has a
typical “polarization” shape: if the reference position is close E.=T.,+W, (3.18)
to the nucleus, probability (“charge density”) is lowered around
the nucleus and enhanced at the outside of the atom; if the ref- The difference between the DFT and traditional definitions
erence position is at the outside, the reverse “polarization” takesof correlation is often ignored and correlation functionals are
place; if the reference position is in between, in the middle of usually judged by their performance in reproducing the tradi-
the electron cloud, charge is “pushed away” around the referencetional correlation energy, which is often the only one known to
electron and increases at the backside of the nucleus. Thea reasonable degree of accuracy. It has indeed been demon-
Coulomb hole for an electron pair bond will be discussed below. strated that the traditional and DFT definitions do not differ
Turning now to the definition of the correlation energy, we much for two-electron atom$3 However, we wish to stress
note that for a long time quantum chemists have agreed to definethat the difference is rather essen#if not numerically then
the correlation energy as the difference between the exact andat least conceptually. Since the Hartrdeock energy uses the

Hartree-Fock energiesEcor = E — EHF. The well-known Hartree-Fock one-electron densifyH*

quantity Ey. of DFT is howevemot the sum ofW/™ and Eqorr 1) (2)

(and neither oW and Eco). We arrive atEy: by following EHF — THF 4+ HE dr + 1.p Y 1 d2+ WHF
Kohn and Sha#f in writing the exact total energy not in the fp vd Zf (P did X
traditional way (3.19)

1 which differs from the exact density by an amouy = p —
E=T+ fpvdr + Ef PVeou dr + W (3.13) oHF, the traditional correlation energy may be written as

but, usingTs, as EFfF=g-E"
— 1 Ap(1)p(2
E=To+ fpvdr +35[pVooudr +E,  (3.14) :T—THF+prUdr+fMd1d2+
12
Since all other quantities in this expression are defined, this 1 ~Ap(L)Ap(2) F
equation define&, Ef— d1 d2+ W, — WF (3.20)

12

E.=T-T)+W,. =T, +W, 3.15

XC ( s) Xc c xC ( ) — TcHF 4 VcHF + Cgul,c+ V\I‘:F
where we have introduced the usual notatiop for the HE F HE i
correlation correction (with respect ) to the kinetic energy. 1 ne termsT." and WET of E; will be different from the
It is customary to define as the correlation enefgyof DFT corresponding termk andW; of EC sometimes quite essentially
the nonexchange part Bfc, Ec = Exc — Wy. (n.b. to distinguish so, as we will see below, bllﬂi' also contains the additional
traditional quantities, such as the Hartrdeock exchange terms V", the correlation correction to the electrenuclear
energy, from the present DFT quantities, we will give them the potential energy, anwgguw the correlation correction to the
explicit superscript HF. EX" will be used to denote the = Coulombic part of the electrerelectron potential energy.
traditional correlation energy.) Evidently, the correlation energy These two terms of course also makd = W' + EF
of DFT is just the difference between the exact energy (3.14) essentially different fronkyc,
and the Kohr-Sham determinantal energy (3.6),

EXC = TC + WXC

E.=E.—W,=E—-E® 3.16
‘ EXC " ( ) E;'cF = TCHF + ch + V?F + Cgul,c (3'21)
Since the HartreeFock determinant is by definition the one
with the lowest possible energiS must necessarily be higher In order to appreciate the difference betw&h andE, we
thanEHF, and the DFT correlation energy must be more negative have given in Table 1 the various termsEﬁF, for a series of

(larger in an absolute sense) than the traditional correlation common molecule¥?101 The CI calculations from which these
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numbers have been derived have yielded a large percentage oéxperience the nuclear attraction of that nucleus unscreened,
the correlation energy for the light systems, but not nearly so and it will not be perturbed much by the fully screened nucleus
for the transition metal complex@%.105.196 The numbers will of the other H atom. The Fermi hole, however, removes only
only be used qualitatively here. We first observe that the half of the density, not the complete density, around the
widespread feeling that the electron density is described well electron’s own nucleus, so that the nucleus is (incorrectly) partly
by the Hartree-Fock wave function and that correlation mainly ~ screened and the electron will respond by building a too diffuse
affects the two-electron part of the energy by building a proper orbital. This is putting in the language of “effective one-electron
Coulomb hole around a reference electron, is not corroboratedpotentials” the well-known deficiency of the HartreEock

by the results in the table. A striking example is dissociating wave function, leading to unwarranted ionic configurations. It
H, (the comparison is with aestricted Hartree-Fock wave should be realized, however, that the largest effect is not an
function). Taking the correlation correction to the electron  error in the two-electron part of the energy but that the one-
nuclear energy"” as a measure of the quality of the Hartree  €lectron density becomes so diffuse that the largest error occurs
Fock electron density, it is clear that this density must be very in the electror-nuclear energy.

poor at larger bond distances. Not even at the equilibrium  The Coulomb hole has the typical shape of creating a hole
distance isVZ'F really small, but it becomes even much larger around the reference electron and causing buildup _of charge
than the electronelectron correlation energy at 5.0 and 10.0 further away at the other nucleus (the Coulomb hole integrates
bohr. Both the one-electron termﬁF and T?F are much to z_ero). At a large interatomic distance the Coulomb hole
larger than the electrerelectron term, and at 10.0 bohr the obwously takes care that the totgl hole around the reference
electron-nuclear correlation energy is the largest of all terms, €€ctron is equal to the total density at that nucleus, and at the
It should be appreciated that a KohSham calculation (again other' nL'JcIeus' it cancels the Fermi hole, so the full felectron
we just take arestricted calculation) would for H at large de_ns_lty is undisturbed at the other hydrogen atom, as it should.
distance give the exact density, and thereforétherm would Itis important to note that the Coulc_)r_nb and total holes cannot
disappear, but also that the kinetic correlation endkgwould be static. When the reference position moves along the bond
be 397 since the Koha-Sham orbital would in the region around axis and crosses the bond midpoint, the ho_Ie W|II_have_ to sw_|tch
each hydrogen atom be just a hydrogenic 1s atomic orbital, to the other nucleus. So the_ _total hole _w!II be invariant W'th
yielding the right limiting kinetic energy of two hydrogen atoms. '€SPect to the reference position when it is somewhere in the
Before we continue to analyze the, idase in more detalil, it neighborhood of one nucleus, but there will be a region of rapid

should be clear that this example, even if somewhat special, ischange in the neighborhood of the bond midpoint.
by no means exceptional in having large correlation terms The too weak nature of the Fermi hole around the reference

associated with density changes. The transition metal com- €lectron and its static nature are deficiencies that make the
plexes, even if the Cl calculations were far from complete, show Eart(;ee—Fock model Sﬁno%slyddeflcgnthln anhy electron pla}lrl

tremendous correlation energies, in particular in view of the Pond. more so in weaker bonds and when there are multiple
usually rather weak coordination bond. Note that in MnO bonds. Extreme examples occur for bonds involving transition
the electror-electron energyncreasesindicating closer prox- ~ Metal atomse.g.the 5-fold bond between Mn and the Cage

i — 105 10:
imity of the electrons as a consequence of electron correlation.!n MnOa™ 1% (cf. also MnO™ 1) and the famous case of £r

The correlation effects in this molecule have been discussedWith @ weak 6-fold bondef. discussion in ref 109. .
extensively in ref 105. As a matter of fact, only the very light As we have argued here, the DFT definition of the correlation

sysems such as He confor to the expecaton habfe  ¥1°70/ 195 Some seshetcal and piysealy appeaing eatres
term will be small and that the correlation correction to the ! I 9

potential energy is mostly an electroalectron interaction ggzrattcl)ogﬁiaoilr?ﬁtﬂlg?c;hanssw;mtrﬁr?:ittlooqa;r?gfolr?{ olrt :zorl]g::jlltea"
energy correction. In this case, in keeping with the virial y :

relationship, the total correlation correction to the electron If an exact or very accurate wave function is not known, this is

. . E F . . at present impossible; even if the latter is known it is by no
electron interaction (_energWéou,,c +. W‘: 1S ?‘b°“t twice as oang straightforward to obtain the KS determinantal wave
large as the correlation energy which itself is equal (but with

function, though progress is being madé&?.°0.116112
opposite sign) to the kinetic correctionF. A simple mol- gn prog g

ecule like N however, has a very large electronuclear 4. The Exact (DFT) Exchange-Correlation Energy
correlation energy, considerably larger than the eleetron Density and the Kohn—Sham Potential

electron term. This demonstrates that the DFT correlation  \ye first show that the KohaSham one-electron operafoy

energy, with a zero electremuclear term, even if it would not differs from the Fock operatdronly in that the exchange part

nL_lmerlcaIIy differ much from the tr_a_d|t|onal correlation energy, st is replaced by the local potentiak(r) = 0Exdpl/dp(r).

will have a very different composition. Note thatE, is a functional ofp since all the other terms in
In order to understand these results better, and to prepare for3.14 are functionals of. Replacing in the variationally stable

the discussion of the KohrSham potential and the exchange functionalE,[p] [(2.6)] T[] + Wic[p] by Tdp] + Exdp] (which

correlation energy density in the next section, we show in Figure definesEyJp]) we obtain

1 plots of the Fermi, Coulomb, and total holes ip & various

distanceg%:101 The Fermi hole in a two-electron system only _

consists of the self-interaction correction and is equal to the Elp] = Tdp] + fu(l)p(l) di+

density of the electron with the same spin as the reference 1

electron, which is half the total density. Although the hole is §fp(1)VC°”'(1) di+ Edle] (4.1)

only plotted for a reference electron at a position 0.3 bohr at

the left of the right nucleus, it should be emphasized that the We use for simplicity of notation space-spin coordinates (like

Fermi hole is completely independent of the position of the 1=r;s;) throughout, although the external potential is as usual

reference electron. It is totally inadequate as an approximationassumed to be spin-independent({{,+/2) = v(r1, =1,) =

to the total hole, in particular at long bond distances. At such u»(ri)) and also the Coulomb potential is onlydependentE,-

distances, a reference electron close to the right nucleus shouldp] attains its minimum value at the ground state dengityso
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Fermi hole + Coulomb hole = total hole

0.1
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Figure 1. The Fermi hole, Coulomb hole, and total hole in theriiblecule at various values of the internuclear distance. In all plots the reference
electron is placed 0.3 bohr to the left of the right nucleus. Nuclear positions are indicated with black dots on the axis.

using the Lagrange multipliex to keep the density properly  the potential for which the ground state density of the nonin-
normalized ta\ electrons, the variational stability requires that teracting system is identical to the one for the interacting system,

SplELel — [ o) d1= N, splEde] —u( (1) d1- N, = 0
e . _ oT, -
3o(1) (1) lp, T (1) + Veou1) + —= 5 (1) —u=0 (4.2) mlpc +u(l)—u=0 (4.3)

Also the functionaEdp] [(2.7) for the noninteracting system]  This shows thatys is, apart from a constant, equal to the
attains its minimum for the densipe, sinceuvs is by definition functional derivative ofls, and the question of the existence of
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vs is equivalent to the question of existence of this functional position of the reference electffn

derivative. The possibility that we have a spin-polarized system

with different Kohn-Sham potentials for different spinse.
vo(r 1,51 = o) = vso(r1) different fromug(r 1,51 = —45) = vsp(r),

is automatically accounted for through our use of space-spin

coordinates, although we will not explicitly use it in this paper.

In that case the functional derivative with respect to the density

of up-spin electrons)T/op(r 1,51 = 2) = 6T/ pa(r1), yielding
vsa(r1), may differ from that with respect to down-spin electrons.
Eliminating 6Tddp from (4.2) and (4.3) and writingy. =
OEx p)/dp, we obtain forvs, apart from a constant,
Us(l) =v(1)+ VCouI(l) + ch(l) (4.4)
Exc and vy are obviously the crucial quantities of DFT.
Traditional ab initio quantum chemistry tries to improve

properties, in particular energetics, basically by trying to increase
the accuracy of the wave function. Density functional methods
on the other hand try to obtain good energetics by trying to

develop more accurate models for the excharg®relation
energy density per particle,, from which the exchange
correlation energy,. may be obtained

Exe = [ p(1)e(1) d1 (4.5)

€xc should be a functional of the density, and models have been

derived initially from the electron gas, using at pointhe

Ukin(1) =%f|V1<I>(2,...N|1)|2d2 L IN=

VeViy(LD) ey [Vap(D)P
2p(1) 8p(1)?

There are two well-known situations where the exchange
correlation hole rapidly changes with reference position. The
first is related to change of the Fermi hole. The Fermi hole is
known to have approximately the shape of the localized orbital
at reference positions where most of the total charge can be
ascribed to one particular localized orbitél. When the
reference position crosses the border region between the
localized orbitals, the Fermi hole undergoes rapid change. In
atoms the Fermi hole is to a large degree localized within the
shell where the reference position is located (the atomic shells
are not only energetically but also spatially quite well separated)
and rapid “jumping” of the hole occurs when going from one
atomic shell to the next. This leads to peaksjin in atoms”
which we will not discuss here. In the case of an electron pair
bond we have noted the rapid change of the Coulomb hole when
the reference position crosses the bond midpoint. It has indeed
been observed thaii, exhibits a sharp peak around the bond
midpoint in H, at large bond distancg.

It has been shown that the kinetic energy can be written as

(4.10)

properties of the homogeneous electron gas with uniform density the sum of the so-called Weizder kinetic energy, which isl

p equal to the density(r) that the finite system has locally

times the kinetic energy of an electron in the “density orbital”

(the local-density approximation). The gradient expansion for (o/N)¥2 and the integral of the density times the kinetic potential

systems of varying electron density has some difficulties, so
generalized gradient approximations have been developed for

the exchange part-19and correlation paf€19that expressyc
in terms of local properties of the density at painits value,
and the value of the gradient or Laplacian),
ex (1)~ f (p(1).Vp(1).V7p(1),...) (4.6)
We may also exploit the essential simplicity Bf. (it just
consists of the two termék. and T;) to obtain and study the

exactey..°%113 Introducing the so-called kinetic potentialgy
and vskin®"91%3we may write

Exe =W T T—Ts= %fp(l) Uh0|e(1) di+

XC

S (D) @in(1) = v5jin(1)) d1 (4.7)

The hole potentialuﬂ‘g'e has already been introduced, but in
order to clarify the physical meaning of the kinetic potentials
we need to factorize the wave functidH in the so-called
marginal (p/N)~?) and conditional ) probability amplitudes
introduced by Hunté#*

r(1)

W(1,2,..N) = 4 /5] P(2..NI1)

(4.8)

The conditional probability amplitud® describes all effects
of electron correlation, since its square

L w(L,2,...N)?

2
|D(2,...N|1)]? = SN (4.9)

represents the probability distribution of the other electrons

Tw = Nf\/é(— %vz)\/% dr

T=Ty+ [pv,dl

Ts = TW + fPUs,kin di

Since the density is exactly the same for the KeBfam wave
function and the exact wave functiofy, is the same foi
andTs, so indeed

(4.11)

To= fP(Ukin — Ugyn) d1= fPUc,kin di

The kinetic correlation energy density per particl&in = kin

— wvskin, Which is written as a potential for reasons to become
clear below, is truly related to the Coulomb correlation. The
Kohn—Sham determinan¥s and the related conditional prob-
ability amplitudeds embody only the Fermi hole, $Qxin, Which

is related tods by (4.10), only reflects the mobility of the Fermi
hole. In the electron pair bond we have seen thatvill exhibit

a peak at the bond midpoint due to the switching of the Coulomb
hole from one nucleus to the othervsiin, however, is
everywhere zero in a two-electron system since the Fermi hole
is completely static. This follows also immediately when one
writes vskin in terms of molecular orbitals, which is possible in
view of the simple one-determinantal natureW{

(4.12)

O=Lmo e anPe . =15 e, 2
U&kin = - 1¥g ool en = - 1—
? SRRV,

(4.13)

around a reference electron at position 1. The kinetic potential Since in the closed shell two-electron case there is only one
is related to the rate of change of the conditional probability doubly occupied KohrSham orbital withpy(1) = (o(1))Y2 vskin
distribution of the other electrons with respect to change in the will be zero.
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We now obtain the following simple and closely related (3) win may be obtained straightforwardly fropl) andy (1,1)
expressions for the exchangeorrelation energy density and according to (4.10). (4)sxin may be obtained from (4.10) with
the exchangecorrelation potential y«(1,1) substituted fory (1,1), or alternatively from (4.13).

Obviously, for this the KoharSham orbitals are needed, which

_1 hole , ., can be obtained ifs is known. This is actually the hard part
€xc Uxc Uc kin
2 ' of the procedure. Many attempts have been made to generate
from a given density(1) the vs that uniquely corresponds to
__  hol
Ve = Vyo T+ Vepin T V7 (4.14) jt,7484-87.110.111,118124 "\ ost of these methods have been applied

. . ) to atoms, some are indeed only suitable for spherically sym-

These are the central equations of this paper. The functional yyetric and/or few-electron systems. To date, the only methods
differentiation of Exc[p] = [pexc([p];1) d1 leads immediately  ihat have been applied to molec#&¥112are those of Van
to the termso"® and e kin in vxc (the factor oft/s in front of in Leeuwen and Baerent$°%°and the method of Zhao, Morrison,
the expression foky: disappears inv: due to the double and Parfl1112122 Since the accurate Cl density is usually
occurrence op in (3.5) for Wi). The response terni®s? of obtained from a Gaussian basis set calculation, there are
vxc contains the terms with functional derivatives of the kinetic ¢gnsiderable technical difficulties in obtaining an accurate
potentials and the pair correlation functig(L,2" (see (6.1)).  The “accurate” density is usually inaccurate both close to the
We will defer a discussion of the so-called response part of nycleus and in the tail of the density due to the properties of
Uxer VR8I which will be the least familiar entity in (4.14),  the Gaussians. There are also more fundamental problems
to section 6. connected with the requirement of generating the values of the

Since we have shown how these quantities are related to thefnction (1) at all points in space from a set of data that is
exact wave function, we may actally obtain them from exact pecessarily limited due to the finiteness of the basis. Fortu-
(very accurate) wave functions and study them. This provides nately, these problems do not prohibit the generation of

a method to judge existing model expressionsdgrand vyc

reasonable potentialg(1) and in particular Koh#tSham orbitals

and to develop better models when needed. It should be notedy 1. Only the Kohn-Sham orbitals are needed to obtaimin,

however, that,. is not a unique function af. Different spatial
functionse, may yield the same integratdsi.. This is well
known for the kinetic energy density, where partial integration
may lead to an alternative kinetic energy density that also
integrates to the same kinetic energy

T= _fglznid’i*vz(bi dl=+ f%ZniW(pilzdl (4.15)

Similarly, an alternative exchangeorrelation energy density

but v5(1) is also required if we want to obtaii®sh, which is
just the difference ot i.e. vxc and the potential&*x‘g'e and
vekin that were already determined.

In the next section we will show some exact exchange
correlation energy densities for very simple systems (He,
dissociating H). These at the same time provide, of course, a
view of the /% and vcin components of the KohaSham
potentialvs. Some effects of the response partugfwill be
mentioned, but®sPwill be discussed more fully in section 6.

is often defined by the use of the so-called coupling constant 5. Kohn—Sham Potentials and Correlation Energy

integrationt16-118 which leads to an exchangeorrelation
energy densitg,(1) that is the potentialy. of an “averaged”
exchange-correlation hole that has the kinetic effects incor-
porated. We, however, stick to (4.14) since it follows very
straightforwardly from the definition dE,. and has terms that

Densities in He and B

In order to focus on the effects of electron correlation, we
consider specifically the correlation energy density and the
correlation potential

have a clear physical meaning (see also below) and are clearly

connected with the corresponding terms in the KeBham
potential (whichis a unique function of). Moreover, they

can be calculated from accurate wave functions, which is at
present not possible with the alternative coupling constant

integrateduy.. It is to be emphasized that the potentiajg
and vskin, and therefore alseoc kin, €ven though they are also
(partial) kinetic energy densities, are well-defined functions of
r. In this context it is interesting to note the equality

b= [ CD*(2...N|1)(—%V2)CI>(2...N|1) d2.. =
%f|vl¢>(2...|\||1)|2 d2 ... N (4.16)

which is not based on partial integration (the integration is not
over coordinate 1) but has been proven in ref 87 from the
normalization of®(2..N|1) at any point 1.

Let us consider the calculation ef; and vy of (4.14) from
accurate wave functions. The following steps have to be
taken: (1) A large-scale CI calculation may provide us with
accurate, correlated(1), y (1,1), andI'(1,2). (2)219%(1) may

Xc

be obtained straightforwardly fromi(1,2) andp(1),

e (T2~ p(Lp@) 1
W=/

UXC

2 (4.17)

12

W, =W, — W, = [p(1)e(1) d1

Ec(:l-) = %UEOIe(l) + vc,kin(l) =

1,.(1,2)-T(1,2) 1
EJL__TRIT___F;d2+U”“u)

v(1) = 0o(1) = (1) = o) + v jan(D) + 2AL) (5.1)

Since I'(1,2) is the two-density of the KokfSham one-
determinantal wave functioWs, it is determined by the one-
density v4(1,2) through the relatiol'(1,2) = p(1)p(2) —
v«(1,2)y42,1),cf. (3.7b), and can be obtained directly from the
Kohn—Sham orbitals. The exchange potentig! that is
subtracted fromvy to obtain the correlation potential, is the
potential of the Fermi hole plus a corresponding response patrt.
As a matter of fact, the response parvgfs zero in two-electron
systems, so in the examples beloff™{1) is actually also the
response part of the full: and the ¢ subscript can be omitted.
In Figure 2 we show the componentsq, and ¥/, of e for

H, at Re and at large distance (5.0 au) and for He. Note that at
Re (Figure 2a) the Coulomb hole potential is attractive around
the hydrogen nuclei and clearly makes the largest contribution
to e, but vekin Is by no means negligiblesf in is equal tovkin
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Figure 2. The correlation energy density(r) and its components.in (= v4in in these cases) in three cases: (a) plotted along the bond axis of
H, at R(H—H) = 1.401 bohr R) (the bond midpoint is az = 0.0); (b)idem at R(H—H) = 5.0 bohr; (c) for He.

in this two-electron case and therefore positive definite according become magnified in the large-distance situatior«(B.0 bohr)
to the defining equation (4.10)]. In particularekin clearly of Figures 2b and 3b (note the difference in scale with Figures
exhibits a maximum at the bond midpoint, as we expected on 23 and 3a). The Coulomb hole potential is strongly attractive
the basis of the switching of the Coulomb hole in that region. around the hydrogen nuclei. Sine&sPis negligible in this
Considering the corresponding correlation potentjah Figure E{articular case, the KohrSham potentiabs basically differs

3a, one notes that the response potential makes a rather stron om the Fock operator (which is also just a local potential in

positive contribution. It diminishes significantly the attractive hole

nature oft[°® around the nucleus and combined withi, the this case) by the terms;™ + vein, and it is clear that in

effect of /¢ is to make v just positive around the bond particulars®® will make the Kohr-Sham orbitals much more
midpoint. The relatively small net contracting naturevgfis contracted around the H nuclei than the HartrEeck orbitals.

in agreement with the relatively small negative electranclear This is precisely what is needed of course, since we have seen
correlation correction of~0.5 eV in Table 1. These effects that the largest error in the HartreEock case was due to the



5394 J. Phys. Chem. A, Vol. 101, No. 30, 1997

(a.u)

-0.2 -

0.0 0.5 1.0 15 20 2.5 3.0

0.1+

(a.n.)

=

w24/

Baerends and Gritsenko

0.4 —

(a.u.)

=]

T T
0.0 0.5 1.0

T T T

1.5 2.0 25 3.0
r(aun)

Figure 3. The correlation potential; and its components"®'¢, v xin (= vin in this case), and™s? (= vN~1in this case) for the cases: (a) plotted
along the bond axis of Hat R(H—H) = 1.401 bohr R.) (the bond midpoint is at = 0.0); (b)idem at R(H—H) = 5.0 bohr; (c) for He.

much too diffuse nature of the HartreBock density, caused

tional probability distribution of the other electrons is “momen-

by the too strong screening of the nuclei by half of the other tarily”, i.e. when the reference electron is at position 1; the
electron that does not go away to the other nucleus. Equiva-kinetic potential on the other hand is related to the “dynamics”
lently, the exchange hole potential is too weak and has to be of the hole. It has a large bond midpoint peak ip & large

deepened by the Coulomb hole potential. The fact thatin
the full exchange correlation hole potential’®* features, and
not just the Fermi hole potentiaj}"'e, explains why a restricted
Kohn—Sham calculation on dissociating dan yield just the
sum of two H atom densities. The potentidl’ may be

bond distance since the Coulomb hole is changing strongly as
a function of reference position around the midpoint. The large
peak ofuckin OCcurs in a region where the electron density is
small. Its contribution tas may help to build the exact density,
contributing to the “confinement” of charge around the H

considered to incorporate the information on what the condi- nucleus by the large wall it provides, but its effect on the energy
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Figure 4. Correlation energy density in He compared to a number of model correlation energy densities: PW —-®daded WL, Wilson—
Levy;?” LYP, Lee-Yang—Parré LW, local Wigner!?® (a) —p(r)ec(r) from r = 0.0—0.5 bohr. (b)—4x r?p(r)ec(r) from r = 0.0—2.0 bohr.

by its contribution toc will be very much smaller than the one  model functionals (except for the nuclear peakgﬂf which
of u2°'e since the latter is large where the density is also large. has no energetic effect due to the vanishingly small volume).
This example also very simply demonstrates how DFT works. Since most of the model energy densities integrate to the correct
Whereas the KohaSham determinantal wave functid¥ is, correlation energyparameters in all of the model functionals
of course, in an energetic sense an even poorer wave functionexcept PW have been fitted to obtain this exactly or ap-
than the HartreeFock determinant, the KokfSham potential proximately for He-the underestimation at smallhas to be
does build a correct density, much in contrast to Hartifeeck compensated by overestimation at langefT his is demonstrated
and mostly by the presence o@"'e and to some extentc kin in Figure 4b, where the multiplication byz#? exhibits more
ando®sP?. The correct energy is then provided by the incorpora- clearly the contribution to the integral from variousegions.
tion in the energy density of the correlation effects, mostly by In the region 0.51.4 bohr, where the Coulomb hole has a
1/2u2°'e and to some extent byt kin. characteristic polarization shaf¥all the model energy densi-
The case of He (Figures 2c and 3c) is interesting since it is ties are largerife. more negative) thar.. All the radial
the classical case of purely dynamical correlation and it functions —4m2p(r)e’cn°d(r) corresponding to model energy
conforms to the expectation of reasonably accurate density atdensities have their maximum arouneg= 0.5 bohr, while the
the Hartree-Fock level. The figures show tha kin is smaller maximum in —4nr2p(r)621°d(r) occurs at somewhat shorter
than 1/2u2°'e, but it is not completely negligible. If only the  (ca. 0.3 bohr). In Figure 5 the same comparison is made for
components;'go'e and vc kin Of v would be present, it is clear  the H, molecule atRe (Figure 5a) and at large bond distance
that v would be rather attractive around the nucleus. Itis in (5.0 bohr) (Figure 5b). The values pf2)¢.(2) are plotted for
this case the response paftsP that actually cancels most of  z along the internuclear axis (bond midpointzat 0). It is
the attraction due t@EO'e, so that the totab, is rather small clear that there are considerable discrepancies between the
everywhere and has the characteristic shape, observed by severégxact” correlation energy density and the model energy
authors3485.87.119.12%f heing attractive close to the nucleus and densities, as well as large differences among the latter. The
repulsive further out.z; does not have a large net effect on the models using density gradients were parametrized from atomic
electron density in this case. data (LYP, WL) or obtained from the gradient expansion for
It is interesting to make a compariséfbetween the present  the inhomogeneous electron gas with suitable cutoffs (PW).
“exact” correlation energy density (note, however, the remark However, with regard to density gradients there is a basic
above about the nonuniqueness of the energy density) and thalifference between atoms and molecules. For atorp§’)| is
currently used model correlation energy densities. We take thenever small, while for molecules it is close to zero in the bond
local-density approximation (LDA) for the correlation energy midpoint region. One can expect also that correlation effects
density in the PerdewWang parametrizatiot® the local in this molecular region differ from those in the homogeneous
Wigner (LW) function!?® and the gradient-dependent Perdew  or weakly inhomogeneous electron gas. Because of this,
Wang (PW);%! Lee—Yang—Parr (LYP)? and Wilson-Levy €™r) may have a rather accidental behavior in the bond
(WL)*#"models. In Figure 4 our “exact*p(r)ec(r) = —er) midpoint region. Figure 5a shows that indeed there is rather
from a large CI calculation on He is compared to the model different behavior of the various energy density functions in
correlation energy densities. The various magl) functions the region between the nuclei for the equilibrium-H distance.
have quite different local behavior. In Figure 4a we focus on The exactp(2)e(2) has a pronounced maximum at= 0,
the inner region, between 0.0 and 0.5 bohr, where the Contribu-approaching zero (from below) at that point. The bond midpoint
tion Y,u{°® dominates ¢f. Figure 2c). It is known that the  peak inucuin is largely responsible for this; see Figure 2a. The
Coulomb hole in this region represents mostly-out correla- model functionals seem to lack this feature. Although they have
tion, being negative around the nucleus and the referencemaxima at the bond midpoint, they are considerably more
electron and positive further outwat®f. The resulting negative  shallow functions ofz than is p(2e.(2). The Wilson-Levy
1/2z/2°'e ande. in this region are clearly underestimated by all energy density exhibits a sharp minimumzt 0. Around
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Figure 5. Correlation energy density intat R. (a) and aR = 5.0 bohr (b) compared to model correlation energy densities. See caption to Figure
4. zis the coordinate along the internuclear axis; the bond midpointzs=a0.0.

the nucleus the various model energy density functions are maximum depth at the reference position). The same holds for
similar to those found for the He atom, as may be expected the full LDA exchange-correlation hole, not by the use of
from their dependence on the density. However, it should be electron-gas correlation but irrespective of it, simply by the
noted that the underlying correlation is very different. The translational symmetry dictated hole-centering around the refer-
Coulomb hole is now due to lefright correlation rather than  ence electron, where the hole is dominated by the “exchange”
in—out correlation. This difference becomes manifest in the part. References 129 and 130 stress how deficient the Hartree
outer tail. Whereas in He the model energy densities becomeFock hole actually is in many cases due to its too diffuse nature.
more negative thap(z)e(2) at distances from the nucleus larger This goes some way in explaining the relative success (if one
thanca. 0.4 bohr, in B p(2ec(2) remains more negative in the takes HF as the reference) of a rough hole modeling like that
complete tail region. This may be understood from the strong applied in Xx. The results in this section and in section 3
left—right correlation that will be present when the reference demonstrate how pathetically inadequate the exchange hole is;
electron is at these positions. This difference in the physics of it makes restricted HF for dissociating unpaired spin systems
the correlation compared to He is clearly not recognized by the completely sizénconsistent. One may take the view that the
model correlation functionals. Obviously, there will again be LDA hole is actually overshooting and is too localized around
compensation of errors, the model functionals giving more the reference electron and that one should therefore build in
negative contributions around the bond midpoint. The failure some amount of “exact exchange” to make the hole somewhat
of the model functionals to describe lefight correlation more diffuse. This is one way to view Beck&g® successful
becomes very clear in the case where this type of correlation application of hybrid functionals, which has proven very fruitful
becomes very strong, in the near-dissociation situatRfH,— for systems at equilibrium geometries. The precise amount of
H) = 5.0 bohr (Figure 5b). The exap{2)e(2) exhibits wide exact exchange may, however, not be the same for all systems
and deep wells around the nuclef.(Figure 2b). Contrary to and situations. For instance, it is possible to define the amount
this, all model functionals exhibit much smaller wells around of pure exchang®V that has to be mixed with the excharge
the nuclei. The model energy densities are completely deter- correlation part of the two-electron enerlfy. to obtain for
mined by the local electron density and its gradient, which are Ey the exact relatioA%7:131

practically the same as in the H atom. The model functionals

cannot recognize from these local properties of the density the Ee = CW, + (1 — Q)W (5.2)
strong left-right correlation. They will, in fact, integrate to o ) ) ] o
almost the same correlation energy(03 to—0.06 au) as for and it is then easily demonstrated t_hat ip Uhon dIS.SOCIa'[IOI‘l

the equilibrium H-H distance, whereas the exact correlation C has to go to zero. This agrees with the unphysical nature of
energy is—0.3125 aud28 As a matter of fact, the gradient- Pure exc_hange at the dissociation I!ml_t. It has been suggested
corrected density functionals for exchange deviate by ap- {0 redefine “exchange” so that it incorporates the near-
proximately the same amount from the exact exchange, so thatd€genaracy correlation we are dealing with in this exariile.
the total E(r::od is fairly accurate (see ref 107 for a more detailed We believe that, for the purpose of hole modeling, our results

comparison). The compensation of errors in the correlation SO far also provide good arguments in favor of dispensing with

functionals by opposite errors in the exchange functionals seemsthe distinction between exchange and correlation altogether.

to be fairly systematic, resulting in accurate toEgl values
from the existing gradient-corrected total functionals.

We may end this section with a comment on the desirability = The response part of the KohiSham potential is probably
of separating exchange and correlation. It has been recognizedhe least well-known part ofs and maybe the least physically
for a long timé12%130that the exchange-only LDA (X, a = transparent. It plays, however, a significant role in building
2/3) hole already captures some essential physics in the case othe effective one-electron potential of the Keh8ham model,
dissociation or weak interaction by employing, by construction, as we have seen in the previous section. We therefore discuss
a hole that is centered around the reference electron (withits derivation and properties in this section.

6. Response Part of the Koha-Sham Potential
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Taking the functional derivative d& leads directly to the
the potentials/ckin = vkin — vskin @and 210, and, in addition, to
terms in which the functional derivatives of these potentials

enter:

res , kln( ) sk|n( ) ,
W= fo)— o ¢ = ) o 9Lt
1 p(2)p(3) 0(9(2,3) — 1)
> f o oo() d2+ d3
— ULtlar?p_ v;ekslrp:_'_ hole resp_ E:elflrr)]+ hole resp (6.1)

This potential is a measure of the sensitivity of the correlation,
embodied in the conditional probability amplitude and hence
in the kinetic potentials and the pair correlation function, to

density variations. These density variations are to be understood

in the following way. If the density changes po+ dp, then
according to the Hohenberd<ohn theorem this changed density
corresponds uniquely to an external potentiat dv (we only
consider densities that averepresentable). For the system with
external potentialb + 6v we have the corresponding pair-
correlation functiorg([p + 0p];1,2) and kinetic potentials. So

the derivatives occurring in the response potential may be
regarded to reflect the linear response of the system to density

changesip caused by potential chande.
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the conditional amplitude tends to the ground state wave function
of the (N — 1)-electron systen® so »N~1 will tend to zero at
inifinity. Similarly we may define for the noninteracting Kohn
Sham system the analogous quantity
vy (1)= [OF2.NIDHS '®(2..N|1) d2 ... N — E¢
(6.6)

where it should be noted theiN-1 is the Hamiltonian folN —

1 noninteracting electrons in the field that belongs to the
interactingN-electron ground state density. Due to the simple
one-electron nature dfiN"! and the one-determinantal form
of ®@s it is possible to expressN! in terms of the Kohr
Sham orbitals and orbital energies

N (L)
A D) =ey— Ve -
(1)

1
This proves that in a closed-shell two-electron system, where
there is just one KohnSham orbital pN~1 will be identically
zero.
It is now possible to make the identificaticig?

(6.7)

It is gratifying, and a considerable help in understanding the and

physics ofu™sP, that it is possibl& to relate this term in the

Kohn—Sham potential, just as the other terms, to the electron

correlation as described by the conditional amplitudeand

@, of the interacting and noninteracting systems respectively.

To this end we partition the total HamiltoniakB' and of the
interacting and noninteracting systems respectively.

N 1 2 - 1 N-1
HY=—Vi+u1)+ S—+H
2 Sl
N1 N1
HN = Z[ —VZ+ u(j) + Z—} (6.2)
=l 2 =1"ik
and
Hy = —%vi + of1)+ HY !
N1
HY = Z{ —Evf + us(j)} (6.3)
£

It is possible to write®sPin terms of expectation values of the
(N — 1)-Hamiltonians with respect to the conditional amplitudes.

ML) = S + (6.8)
vy (1) = J5R) (6.9)

so that
V1) =N - S TH) (6.10)

Since in He and HuN-1is zero, we can interpret the response
potential directly as the energy of the “wave functio®’
describing the remaining electrons when the reference electron
is located at position 1. In the case of &t large bond length,

it is clear that when the reference electron is at a position close
to one nucleus, a say, tha&h will practically be the 1s wave
function of an electron around the H nucleus b. The energy of
@ will be very close to the ground state energy of thg"H
system, which will be the energy of H atom b slightly perturbed
by proton a at large distance. This explains &t (= sN™1)

is very small in this casef. Figure 3b). The fact that the energy
of @ is a little higher than the ground state energy ef hay

be understood as a lack of resonance stabilization from the
configuration with the electron at a and the bare proton b. This
stabilization will be present in the exact wave function of H
but is lacking in®. We can also understand that for k&

is no longer negligible (Figure 3c)d describes in this case a

When the reference electron is at position 1, we may define asone-electron probability density around the He nucletis=(

the “energy” of the N — 1)-electron system described by the
conditional amplitude® the expectation value dfiN"1 with
respect tod

EV (1) = [o*2..NDH" "®(2.N|1)d2... N (6.4)

which will, according to the variation theorem, at all positions
1 be higher than the ground state energy of the-(1)-electron
system. The definite positive potentid!~! is defined as this
difference
M@= -

Nt (6.5)

It is known that asymptotically, when position 1 goes to infinity,

+2). The Fermi hole is in this case justl/,p(1). If ® would

only describe the Fermi correlation, it would correspond to an
electron density equal to half the He ground state density,
irrespective of the reference position. This is too diffuse
compared to the ground state density of the" ktn and the
energy of® would be higher than the ground state energy of
He", yielding a constant positiveN"1. Incoporating the
Coulomb correlation int@b changes the densify,o(1) by the
Coulomb hole. According to the Coulomb hole plots of Figure
3.1c of ref 100 this makes the density even more diffuse when
the reference position is close to the nucleus, explaining the
relatively high positive value ofV~1 close to the nucleus. When
the reference position moves outward, the Coulomb hole first
gets a polarization shape and finally changes to the contraction
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behavior that reflects the more contracted density of® He
compared td/;p(1) of ground state He® describing then the
He™ ion will have an energy equal to the Heyround state
energy, andN~1 will be zero. The situation for Hat R is
clearly in between He and 4t large bond distance.

It is interesting to consider what happens in the case of an

Baerends and Gritsenko
AT, so thatEgN1 is expressed as
Ey '~ EyA) + Ey(B) + 15 + Er(A"—B) (6.15)

Inserting (6.15) and (6.14) into (6.12) fof*sPyields

electron pair bond between two different nuclei. Suppose the v *\ry € Qg) ~ [Ig = I,] + [E(A—B") — E(A"—B)] +

bond is formed between atoms A and B with ionization
potentialsla andlg, respectively]g > Ia. In order for such a

heteronuclear diatomic molecule to dissociate into neutral atoms,

the highest doubly occupied Koktsham orbital should at large

AE(A—B™;r,) (6.16)

Suppose now that the reference electron is in the re@gn
of the less electronegative atom A, € Qa. In this case the

bond distances be an equal mixture of the A and B atomic conditional amplitude describes thll (- 1)-electron system
orbitals containing the unpaired electrons, since otherwise the o+—B, disturbed around the reference position.R{A—B) is

atoms would become charged. This problem has been discusseghrge and; is in the region of the HOMO, this system is close

by Perdew?® and Almbladh and von Bartf¥* These authors
have put forward arguments that the Ket8ham potential has

to exhibit a positive shift
Avg=1lg— 1, (6.112)

around the more electronegative atBmThis would effectively

put the highest atomic orbitals of A and B at the same energy,

allowing the required 50-50 mix in the KS highest occupied
orbital (HOMO) of the “molecule”. It is possible to show that

the behavior (6.11) of the KS potential stems from the response

part of 1.9 Let us consider the form af®s{1) in the region
of the HOMO ¢n(1). Again we may assume, on account of
(6.7), that uN-1 in this region is negligible, sincepn(1)
constitutes the dominant contributiong¢l). Therefore®sy1)
reduces effectively teN-1(1),
SR~ NN =V ) - BT (6.12)

Suppose that the reference electron is in the reg§dgnof
the more electronegative atom B, € Qg. In this case the
conditional amplitudeb(2..N |1) desribes theN — 1)-electron
system A-B™ consisting of the neutral atom A interacting with
a cation B". This cation will not, in general, be in the ground
state of the B system, but ifr; is actually at a significant
distance from the electronic cloud oftBalthough still by

to the ground state of the cation (AB) As a result, only the
corresponding correction termE(AT—B;r;) contributes to
v™®Rr4) in this region

v Rr,eQ,) ~ AE(AT—B;r,) (6.17)

From (6.17) and (6.14) we can estimate the up-shift®sP
around the more electronegative atom B

AVSP= R eQy) — VoRr,eQ,)

=[lg = o] + [E(A—B") = E(A"=B)] +
[AE(A—B™;r,eQg) — AE(AT—B;r,eQ,)] (6.18)

The leading term of (6.18) at large bond distanBé&—B)
is just the difference of the ionization energies of atoms A and
B. This expression demonstrates that the positive builtiug
~ (Ig—1a) has its origin in the response paftsPof vy or more
precisely in thesN~! component ofuesP. It is caused by the
difference between the conditional amplitude distribution
|®(2..N|1]2 of (N — 1) electrons and the ground state distribu-
tion of the cation (ABj. Whenr; € Qg, the conditional
amplitude distribution corresponds to the systemBY, while
the ground state is the cationtAB. Thus, the conditional
amplitude, embodying the electron correlation which causes the

assumption much closer to B than to A, it has been establishedcomplete exchangecorrelation hole to be located around the

by Katriel and Davidsoft that B, in that case, tends to its
ground state. So in that case at large bond distaR(&s-B)
the energy of this system reduces to

E(A—B") =EyA) + Ey(B) + Ig + Ex(A-B") (6.13)
where Eg(A) and Eo(B) are the ground state energies of the
atoms A and B, respectivelyEi(A—B™) is the energy of

interaction of the atom A with the cation'B If we allowr; to
be in the neighborhood of the other electrons of, B is

reference position, leads to a “repulsive” effect gg in Qg.

The KS potential at a point; in the energetically favorable
region around the electronegative atom B is shifted upward by
a potential barrier of heightd—1,), which originates fromN-1,

to prevent a too strong localization of electrons in that region.
The terms in the second and third brackets of (6.18) provide
corrections to the leading term at larBA—B). The second
term represents a correction from the atom-cation interaction,
which is different for pairs A—B and A—B*. The third term
represents a difference between the energy effects of the

necessary to take into account that the conditional amplitude redistribution of l — 1) electrons of A—B and A-B™ due to

will not describe the ground state oftB The fact that the
system described byp is “distorted” will correspond to an
energy riseAE with respect to the ground state energy. We
may therefore write the enerdgy®1(r, € Qg) in general as
EV(ry € Qp) ~ Eo(A) + Ey(B) + I + E(A—B") +
AE(A—B;r) (6.14)

If R(A—B) is large and; is in the region of the HOMOi .

the presence of the reference electron position in the outer region
of the corresponding charged atom. In other words, the first
term brings the main contribution #osPdue to the different
ionization energies of A and B, the second one brings a correc-
tion due to the different interaction of A and B with a positive
ion, and the third one brings a correction due to the different
distortions of the cations AB* and A"™—B due to different
“response” to the proximity of the reference electron position.
All the terms inAv™%P(6.18) tend to decrease with decreasing

not in the subvalence or core region of B), the effect of the electronegativity difference of atoms A and B, and turn into
electron redistribution incorporated in the last term is expected zero for the homoatomic molecule;fas they should. Foh,

to be small. Sincéa < Ig, the ground state enerdseN ! of
the A—B* system will correspond for largR(A—B) to the
system A'—B of the neutral atom B interacting with the cation

the expression

U Rr) = AE(AT—A;ry) (6.19)
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Figure 6. (a) Kohn—Sham potential in a model one-dimensional diatomic two-electron molecule AB with ionization potential energy difference
lg — Ia = 0.302 au, similar to LiH; (b) response potential®rfor H,, LiH, and BH, all atR = 5.0 bohr; and (c) response potenti&f°and model
response potential for BH & = 5.0 bohr.

which is the analogue of (6.17), is valid for the HOMO region, molecule from two interacting “one-dimensional hydrogen-like
anduv™®qr,) is expected to be small and have a flat form in this atoms”. A single electron of the model “atom” is bound to the

region. This is what we have observed for the Holecule external delta-function potentialx) = — ad(x), so that the
above. “atomic orbital” is ga(X) = a2 exp(—alx|) and the ionization
In Figure 6 we illustrate these points with plots @ffor a energyl, is a¥2. The single KS orbital of the closed-shell

model heteronuclear diatomic molecule (Figure 6a) and'fot system AB is constructed as the bonding orbital
for LiH, BH, and H, at the elongated distance of 5.0 bohr (Figure
6b). Following Perde®® we construct a model diatomic P(x) = c[vae ¥ + vbe P (6.20)
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Figure 7. Step structure of the response part of the exchange potential in Ne and Kr.

wherel is the bond length and normalizes the total density
p(X) = 2|¢(X)|? to two electrons. At large distande this
construction correctly yields the sum of the “atomic” densities
for p(X). The energy of ¢(X) is equal to minus the ionization
energy of the system, which at larfealues is equal to that of
the less electronegative atom A= — a%/2.

Figure 6a represents the KS potentigk) of the system AB
obtained forl = 3,1 = 7 bohr andx = Xa, X = xg by solving
the equation

d’(x)
dx®

for v4(X), usinge = — a%2 and (6.20) fors(x). The parameter
valuesa = 0.63 andb = 1.0 au were chosen in order to fit the
ionization energies of the atoms Li and H, respectively. Figure
6a clearly displays the distinct positive buildupgfx) around

S50+ 0000 = €99 (6.21)

the more electronegative atom B. In the region between the

nucleivgx) has a similar shape for the two distances, stepping
up when going from A to B. In the outer region, beyond the B
“atom”, v{(x) gradually decreases for= 3 au, forming a rather
sharp peak around B. Fbr= 7 au it has a much more shallow
form and forms a step with the B atom on its upper part. With
increasingl the maximum ofvg(X) approaches the valug —
In = 0.302 au.
Figure 6b shows thaf®sPbecomes rather high in the fegion
of Li and B, a feature that will be discussed below, but it also
demonstrates that in the region of the H atgfiPstays flat in
the case of KHbut clearly builds up in the case of LiH and BH.
We have been discussing the properties"®¥in the region

the step behavior of™sPin atoms is caused by the response
part of the exchange potentia{. It already shows up in an
exchange-only treatment like the optimized potential model
(OPMI35-137% 'which seeks to obtain the best local potential to
generate orbitals that minimize the energy of a one-determinantal
wave function. The local potential contains, apart from the
external (nuclear) and electronic Coulomb potentials, an ex-
change potentialy that consists of a hole or screening part and
a response part,

hole resp
Uy=v, T U

X

(6.22)

Figure 7 shows plots of the full as well as the hole and
response parts for Ne and Kr, which clearly demonstrate the
step-like behavior ofi°** The hole part (or Slater potentil
is just the average over the orbital-dependent HartFesrk
exchange potentials for all occupied orbitals and describes the
potential of the Fermi hole,

of a valence electron pair, either in an atomic shell such as the

1s shell of He or in a bonding pair in a homonuclear or
heteronuclear diatomic molecule. As a last point we wish to
mention the strong step-like behavior@#fsPwhen going in an
atom from one shell to the ne&%.°2 In atoms the Fermi

1 N 9(2e2)
(1) =— f d2¢i(1)
’ ¢7(1)Zf ‘ M2 ‘
N (Ll (L)1
L) =y ——— (6.23)
T p(1)
The exchange response potential
2)o(3) 0942.3
V1) = % ik W%l)) d2d3  (6.24)

23

correlation is much stronger than the Coulomb correlation, and may be simplifiec?? within certain approximations, to a form
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first obtained by Krieger, Li, and lafrate (KL’

resp KLI(l) N |¢i(1)|2
vy = W
uz p(1)

where the weightsy, for each orbital contributiomg;(1)/%/p(1)
are the difference of the expectation values over the orbjtal
of the full exchange potential and the Hartree Fock orbital-
dependent exchange potential,

(6.25)

w = (D)D) — vy(D)]ei(1) d1

The form (6.25) of the response potential suggests a step form
since within a given shell the total density will be dominated
by the orbital density of that shell, ¢i(1)|%p(1) will be in
the order of 1 and the constantswill govern the step heights.
Physically the step form of the response potential is refated
to the “jumping” behavior of the Fermi hol€%138 When the
reference position moves inside a shell, the shape of the Ferm

(6.26)

hole is approximately constant and similar in shape and spatial

extent to the shell densitymuch like we observed in the two-
electron case beforebut when the reference position crosses
the boundary between two shells the hole “jumps”
that corresponds to the new shell. We note that the characteristi
little peaks inu at the shell boundaries are actually built in by
the superposition of the step-liké™ on the much smoother
hole potentialz’®®. Modeling of v is greatly facilitated by
this observation and it has been shé#that a satisfactory model
response potential is obtained by using the KLI form (6.25)
with the weightsw; determined a¥[p](u — €)%/2

3i(1)?
p(1)

(6.27)

N
4P =S Klelyu — ¢

This form of the response potential obeys requirements like
gauge invariance and proper scalingepfande;

u[plir) = Av([p];Ar) (6.28)
eilp;] = %] (6.29)

upon scaling of the density
pa(r) = 2°p(ar) (6.30)
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Hartree-Fock models. In particular we have stressed that the
correlation energy is defined in DFT in a different way than
traditionally in quantum chemistry. It is the difference between
the exact total energy and the energy of the KeBham
determinantal wave function built from the Koh&ham orbit-
als. Since the latter is necessarily higher than the Hartree
Fock energy, the correlation energy of DFT will be larger (more
negative) than the traditional one. More importantly, however,
it will have very different components, the correlation correction
to the electror-nuclear potential energy for instance being zero
since the Koha-Sham density is equal to the exact density.
Physically the difference between the KetfBham and Har-
tree—Fock models may be understood from the fact that the
'Hartree-Fock “potential” only embodies the Fermi correlation,
while the leading term in the KohfiSham potentiaby. is the
potential of the full correlation hole, Fermi plus Coulomb. We
have demonstrated that the fact that the effective potential of
the Kohn-Sham model incorporates the Coulomb correlation
effects is very important for the building of the correct electronic
charge distribution. The KohnSham orbitals are physically
sound and may be expected to be more suitable for use in
qualitative molecular orbital theory than either Hartréeck

or semiempirical orbitals.

to the shape A gecomposition of both the exchangeorrelation energy
Gdensity ,c and the exchangecorrelation potentialvy. has

demonstrated that these quantities may be related directly to
various aspects of electron correlation. The most important term
in both is the potential of the Fermi plus Coulomb hole,
/1% Both also contain a kinetic correlation potentialin,
accounting for the differencg; between the exact kinetic energy
and the kinetic energys of the Kohn—Sham orbitals. Whereas
1% gives in a sense a static picture of the correlation,
reflecting the shape of the total hole around the reference
position, v kin In @ sense reflects a dynamic aspect of correlation,
being sensitive to the rate of change of the total hole when the
reference position changes. This is particularly relevant around
the bond midpoint, where the Coulomb hole, being localized
around the nucleus close to the reference position, rapidly
switches from one nucleus to the other one. There isn
(but not iney) a third term, the response part of the Kehn
Sham potential. Special featuresi&, such as its typical step
behavior in atoms when going from one shell to the next and
the positive buildup around the most electronegative nucleus
in a heteronuclear molecule, have been related to the electron
correlation by using an expression foi®sP in terms of the
conditional amplitude®(2..N | 1) and®«2..N | 1) of the exact

Expression (6.27) becomes exact for the homogeneous electrodnteracting system and the Kohi$ham system, respectively.

gas with

K=£%0.382

8
- (6.31)

Figure 6¢ shows for BH at 5.0 bohr that this model response

potential does describe the high step in the 1s region of B and

also the weaker “step” in the 2s region, but it fails to describe
the positive build up around H.

7. Summary

The central tenet in this discussion of DFT has been the role
of the Kohn—-Sham one-electron model as an alternative
molecular orbital theory to be clearly distinguished from
Hartree-Fock. It does not, as some semiempirical methods do,
strive to mimick Hartree Fock as closely as possible, but it is
related to the exact solution of the many-electron problem. We
have highlighted the difference between the Keldtham and

We finally note that the special properties of the Ket8ham
orbitals also make the KS determinant an interesting zero-order
approximate wave function. Although the KS determinant lacks
certain convenient properties of the HF determinant, it may be
well worth studying Cl and perturbation treatments in the KS
orbital basis.
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