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A comparison is made between traditional quantum chemical approaches to the electron correlation problem
and the one taken in density functional theory (DFT). Well-known concepts of DFT, such as the exchange-
correlation energyExc ) ∫F(r ) εxc(r ) dr and the exchange-correlation potentialVxc(r ) are related to electron
correlation as described in terms of density matrices and the conditional amplitude (Fermi and Coulomb
holes). The Kohn-Sham one-electron or orbital model of DFT is contrasted with Hartree-Fock, and the
definitions of exchange and correlation in DFT are compared with the traditional ones. The exchange-
correlation energy densityεxc(r ) is decomposed into kinetic and electron-electron potential energy components,
and a practical way of calculating these from accurate wave functions is discussed, which offers a route to
systematic improvement.Vxc(r ) is likewise decomposed, and special features (bond midpoint peak, various
types of step behavior) are identified and related to electronic correlation.

1. Introduction

There has been in recent years a sharp increase in the number
of molecular electronic structure calculations based on density
functional theory (DFT). Over the years, extensive validation
of proposed functionals1-13 has been carried out for elementary
second- and third-row molecules (among these the G1 and G2
sets)10,12-27 and for transition-metal complexes and organome-
tallic systems,28-31 for transition states in reactions,32-38 and,
more recently, for charge-transfer complexes.39 The gradient-
corrected exchange functional of Becke,7 and the correlation
functionals of Lee, Yang, and Parr,8 based on the Colle-
Salvetti40 correlation energy expression, and of Perdew and
collaborators6,10 prove to be particularly accurate, with often
even improved accuracy coming from the hybrid functionals
introduced by Becke.25,26 At the same time the local nature of
the effective potential in the one-electron Kohn-Sham equations
affords efficient computational schemes. The evaluation of
matrix elements of the Kohn-Sham exchange-correlation
potential always requires at some step a 3D numerical integra-

tion. The Diophantine method introduced by Ellis41 has been
the first 3D numerical integration method applied succesfully
to molecular electronic structure calculations, but the problem
of carrying out 3D numerical integration for poyatomic systems
to arbitrary precision was only solved in the mid eighties by
Boerrigter et al.42,43 and Becke.44 The remaining Coulomb
problem (the two-electron integrals “bottleneck”) has been
addressed by the introduction of auxiliary basis sets (“density
fitting”) by Baerends et al.45 These authors applied the
expansion of the density in an auxiliary basis set in combination
with the use of Slater-type orbitals (STOs) and numerical
integration of the Fock matrix elements (see for a different,
though related, development: Ellis and co-workers46-49 and
Delley50). In these approaches nonstandard basis sets are used
(STOs, numerical atomic orbitals), but Sambe and Felton51 noted
that the density-fitting method could equally well be applied
with Gaussian basis sets. This allows one to stick more closely
to standard quantum chemistry codes, with analytical integral
evaluations for all operators except the exchange-correlation
potential. Dunlapet al.52 have formulated a variationally stable
form of the density fitting. There is currently a revival ofX Abstract published inAdVance ACS Abstracts,June 1, 1997.
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interest in these techniques,53,54 and also their applicability in
anab initio context is being investigated.55,56

Although the high degree of reliability of the DFT calculations
based on the present functionals, usually referred to as general-
ized gradient approximations (GGA), and their computational
expedience are well established, still several elements of density
functional theory that are particularly relevant for molecular
applications remain relatively unknown among quantum chem-
ists. There also remain questions regarding the status of
important ingredients of the theory such as the Kohn-Sham
orbitals: are they mere mathematical constructs to build the
exact (correlated) density from a one-electron model or do they
have some physical sense, similar to the Hartree-Fock orbitals
or to orbitals of more approximate one-electron theories such
as extended Hu¨ckel or to natural orbitals? What is the precise
meaning of the central quantity of DFT, the exchange-
correlation functionalExc? Is it equal to the traditional
correlation energy of quantum chemistry (exact minus Hartree-
Fock energy) plus the Hartree-Fock exchange energy, or plus
the exchange energy evaluated with Kohn-Sham orbitals, or
again something different? How precisely is correlation incor-
porated in a one-electron theory like Kohn-Sham?
We will address these questions from a quantum chemical

point of view in the sense that we will use the traditional ways
in which quantum chemists describe electron correlation: in
terms of one- and two-electron density matrices and the more
pictorial Fermi and Coulomb holes based on them. We will
show that the Kohn-Sham form of density functional theory
can be very simply related to the concepts that quantum chemists
have build up over the years to describe the electronic structure
of atoms and molecules. We will also demonstrate that there
are ways to systematically improve upon the present day model
functionals in case they would fail (which fortunately does not
often seem to be the case). It is possible to construct rigorously
correct exchange-correlation energy densities and Kohn-Sham
potentials, to which one might take recourse in order to construct
improved models might the current ones fail.
This article is structured in the following way. After an

introduction into DFT (section 2) the physics of electronic
correlation is discussed in section 3 in terms of density matrices
and Fermi and Coulomb holes, and the difference between the
way the Hartree-Fock model on the one hand and the Kohn-
Sham model on the other hand treats (or fails to treat) the
correlation is demonstrated. The difference between the defini-
tion of the correlation energy in the two models is highlighted.
In section 4 the decomposition of both the exchange-correlation
energy densityεxc(r ) and the exchange-correlation potential
Vxc(r ) into meaningful components is derived. A method is
proposed to obtain an exact (very accurate) representation of
these spatial functions from an exact (very accurate) wave
function. Examples of accurate correlation energy densities and
Kohn-Sham potentials are given for a few simple systems (He,
H2 at Re and at large bond distance) in section 5. Section 6
finally presents an analysis of the response part of the Kohn-
Sham potential,Vresp.

2. Hohenberg-Kohn and Kohn-Sham Formulations of
Density Functional Theory

We present a few aspects of DFT, without any attempt at
completeness or rigor (see textbooks57-59). Just those features
are highlighted that we need in the subsequent development.
For a many-particle system with some two-particle interaction,

where all particles move in a given local potentialV(r ), and
with a restriction to systems that have nondegenerate ground
states, the first Hohenberg-Kohn theorem (HK-I60) states that

there is a one-to-one mapping between the potentialV(r ), the
particle densityF(r ), and the ground state wave functionΨ0,

This is actually a rather direct consequence of the variational
principle. It implies that given a potential, the wave function
and density that correspond to it are uniquely determined.
Conversely, and this was less intuitively obvious, given a
density, only one potential and wave function correspond to
that density, soΨ0 is a functional ofV and a functional ofF,

We will be concerned with systems of electrons moving in the
field of fixed nuclei, so the external potentialV is always just
the nuclear field, the two-particle interaction is 1/r12, and the
Hamiltonian is

The HK theorem implies that all properties are functionals
of the ground state density, since any property may be
determined as the expectation value of the corresponding
operator,Ô say, and the wave function is determined byF,

In particular the kinetic energy is also a functional of the density,
T[F], as is the electron-electron interaction energyW[F]. These
functionals are called universal since they do not contain the
external potentialV explicitly, and in principle would only have
to be determined once and for all. However, a functional like
T[F] does depend on the use of a specific form of the two-
particle interactionŴ. If for instance we would be dealing with
noninteracting particles (Ŵ) 0), the ground state wave function
belonging to a givenF would be a single determinant,Ψs[F],
different from the wave functionΨ[F] of the fully interacting
system, and the external potentialVs corresponding toF in the
case of noninteracting particles would be different from theV
corresponding toF in the case of interacting particles. The
kinetic energy functional for noninteracting particles

will be different fromT[F].
Clearly the total energy is also a functional of the ground

state density. There is, however, a subtle point here: the
operatorÔ in (2.4) now being the Hamiltonian, we should be
clear about the potentialV(r ) to be used in the Hamiltonian.
There are two main possibilities. If for eachF we take the
potentialV(r ) that corresponds to it according to HK-I, we obtain
the functionalE[F] that yields at eachF the ground state energy
of the unique system having thisF as its ground state density.
We note in passing that not much is known about analytic
properties (extrema, continuity) ofE[F]. If, on the other hand,
we take a fixed potentialV(r ), for whichΨ0 is the ground state
andE0 the corresponding ground state energy, and evaluate for
eachF the expectation value of the Hamiltonian with this fixed
V for Ψ[F], we obtain a functionalEv[F] which, according to
the variation theorem, will haveE0 as lower bound

(HK-I) F(r ) T V(r ) T Ψ0 (2.1)

Ψ0 ) Ψ0[V] ) Ψ0[F] (2.2)

Ĥ ) T̂+ V̂+ Ŵ (2.3)

T̂) ∑
i)1

N

-
1

2
∇2(i); V̂) ∑

i)1

N

V(r i) ) ∑
i)1

N

∑
R)1

A -ZR

|RR - r i|
;

Ŵ) ∑
i<j

N

1/rij

O[F] ) 〈Ψ0[F]|Ô|Ψ0[F]〉 (2.4)

Ts[F] ) 〈Ψs[F]|T̂|Ψs[F]〉 (2.5)
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This theorem was formulated by Hohenberg and Kohn60 and is
usually referred to as the second Hohenberg-Kohn theorem
(HK-II). For a system of noninteracting electrons and a given
external potentialVs the variationally stable energy functional
would simplify to

At this point one may wonder how much has been achieved
since there is no prescription to findΨ0[F] from a given density,
except the somewhat uninteresting one where one would
determine the number of electrons by integration ofF over space,
and the positions and charges of the nuclei from the cusps ofF
so that, the Hamiltonian being determined now, one is back at
the traditional problem of solving the Schro¨dinger equation.
However, we will see below that even as a mere existence
theorem the HK-I theorem can be quite useful, and it justifies
of course the search for functionals of the density for such
important quantities as the kinetic and electron-electron
interaction energies.
We may contrast the density functional expression for the

kinetic and electron-electron interaction energies with the
traditional expressions using density matrices.61-65 It is well
known that knowledge of the complete wave function is not
required to obtain these quantities. For the kinetic energy it is
sufficient to know the one-electron density matrix defined as

where the diagonal elementγ(1;1)≡ F(1) is the probability to
find an electron with coordinates 1 (positionr1, spins1). The
kinetic energy is

and requires thefull one-matrix, including the off-diagonal
elements. The electron-electron interaction energy may be
written in terms of the diagonal elements,Γ(1,2)) Γ(1,2;1,2)
of the two-electron density matrix, or two-density for short,

The diagonalΓ(1,2) represents the probability to find two
electrons simultaneously at “positions” 1 and 2, and the ratio
Γ(1,2)/F(1) represents the conditional probability to find an
electron at 2 when there is known to be one at 1,

and

These expressions demonstrate the well-known fact that in
principle the total wave function, with its complicated depen-
dence onN electron coordinates, is not necessary to obtain the
energy; the reduced one- and two-matrices are sufficient.61,62

However, it has for a long time been considered essential that

to obtain the electron-electron interaction energy one would
need explicit knowledge concerning the conditional probability
to find the remaining electrons around a given one. The HK
theorem broke away from this accepted belief.
Virtually all applications of DFT in quantum chemistry use

the Kohn-Sham one-electron formulation of DFT.66 We may
introduce it by postulating the existence of an “auxiliary” system
of N noninteractingelectrons moving in an external local
potential, calledVs(r ), which has the property that its wave
functionsa single Slater determinant of the lowestN orbitalsswill
yield precisely the same electron density as the exact interacting
electron system with potentialV(r ). So the Kohn-Sham
Hamiltonian is just a sum of one-electron Hamiltonians,

One may wonder if there could be many potentialsVs(r ) with
the property that their firstN occupied orbital densities sum up
to the exact density. The HK-I theorem, however, proves that
Vs(r ) must be unique. The theorem does not rely on the form
of the two-electron interaction, so also ifŴ ) 0, the theorem
implies that density and potential are one-to-one related. This
proves thatVs(r ), if it exists, is unique. Does it always exist?
We refer to the literature for discussions of this so-called
problem of the noninteractingVs-representability of a density
F(r ).67-70 Taking the existence ofVs(r ) for granted for the
molecules the quantum chemists are usually interested in, we
note that the Kohn-Sham one-electron model takes a position
in DFT that is reminiscent of the one that Hartree-Fock takes
in ab initio quantum chemistry. In fact, in some respects it is
more fundamental since it is not (at least not only) the first,
necessarily not exact, step in a sequence of increasingly accurate
wave functions, but it is a one-electron model that is intimately
related to theexactsolution of the many-electron problem. Let
us cite a few properties ofVs(r) which are relevant in this respect.
(1) Vs(r ) is a unique local potential connected with the

interacting many-electron system. This point has just been
discussed.
(2) Vs(r ) yields theexactone-electron densityF(r ). This is

an important difference with Hartree-Fock, which leads to
interesting consequences for the composition of the correlation
energy, as will extensively be discussed below.
(3) εHOMO ) -IPexact. The property that the highest occupied

Kohn-Sham orbital energy is equal to the exact first ionization
energy of the system71,72 is directly related to the fact that the
asymptotic behavior of the density is governed by the first
ionization energy.73 If the density is composed of a finite
number of Kohn-Sham orbitals, this asymptotic behavior of
the density is in turn determined by the one-electron energy of
the highest occupied orbital, which necessarily has to be equal
to the IP. This is a property that is very desirable in molecular
orbital (MO)-based perturbation treatments (PMO theory) or
in qualitative MO theory in general and is often simply assumed
in such theories. Unfortunately, the Kohn-Sham potentials
derived from the local-density approximation (LDA) or the
current GGA functionals have very poor asymptotic behavior
and lead to an artificial upshift of the one-electron energies by

(HK-II) EV[F] ) 〈Ψ[F]|T̂+ V̂+ Ŵ|Ψ[F]〉 g E0 (2.6)

Es[F] ) 〈Ψs[F]|T̂+ V̂s|Ψs[F]〉 )

Ts[F] +∫Vs(r )F(r ) dr g Es,0 (2.7)

γ(1;1′) ) N∫Ψ(1,2,...,N)Ψ*(1′,2,...,N) d2 ... dN (2.8)

T) 〈T̂〉 )∫1f1′
- 1
2
∇2(1)γ(1,1′) d1 (2.9)

Γ(1,2;1′,2′) )

N(N- 1)∫Ψ(1,2,3,...,N)Ψ*(1′,2′,3,...,N) d3 ... dN (2.10)

Fcond(2|1)≡ Γ(1,2)/F(1) (2.11)

W) 〈Ŵ〉 ) 1
2∫ 1r12 Γ(1,2) d1 d2)

1
2∫d1F(1)∫Fcond(2|1)

r12
d2 (2.12)

Ĥs ) ∑
i

ĥs(i) ) ∑
i

(-
1

2
∇2(i) + Vs(r i))

ĥs(1)φi(1)) εiφi(1)

Ψs ) |φ1(1)φ2(2) ...φN(N)|

Fs(r ) ) ∑
i)1

N

∑
s

|φi(r ,s)|2 ) Fexact(r ) (2.13)
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typically some 5 eV. This can be remedied by constructing
potentials with better asymptotic behavior,74 which is in fact
important when considering properties that depend on the the
tail of the density, such as dipole75,76and higher77 polarizabili-
ties. [We note in passing that the upshift of the one-electron
energies in an LDA or GGA calculation, which persists down
to the core levels, implies that∑niεi has a considerable error.
On the other hand, the total energy in the GGA approximation
does not nearly exhibit such a large error (see the comparison
between GGA errors inε and inEtotal in ref 78). If one writes
the total energy as∑niεi minus correction terms for double-
counting of electron-electron interaction,E) ∑niεi - ∫F(1)F-
(2)/r12 d1 d2+ (Exc - ∫FVxc dτ), this implies that there is a
compensating error in the other terms. In view of the deficien-
cies in the GGA approximation to the response part of the
exchange-correlation potential,78 the compensating error most
probably involves the term- ∫FVrespdτ, which is part of (Exc
- ∫FVxc dτ). See below for definition and discussion of these
quantities.]
(4) εLUMO (and all other virtual orbital energies) are solutions

in exactly the same potential as the occupied orbitals. They
are therefore not upshifted in the same way as Hartree-Fock
virtual orbitals are. Hartree-Fock orbital energy differences
are not estimates of excitation energies, they have to be
combined with appropriateJ andK integrals.62 The Kohn-
Sham orbital energy differences, however, play a role as a first
approximation to the excitation energy in the treatment of
excitation energies using time-dependent DFT.79-82 It has
actually been observed empirically for a long time that these
orbital energy differences are good approximations to excitation
energies, and some very interesting observations concerning the
relationship between virtual-occupied Kohn-Sham orbital
energy differences and excitation energies have recently been
made.83 At this point we leave it at noting that the virtual
Kohn-Sham orbital energies may serve well in qualitative MO
considerations. Their precise relationship with excitation ener-
gies will hopefully be clarified further by developments in
excitation energy calculations using time-dependent DFT.
(5) Vs(r ) and components ofVs(r ) have remarkable structure,

such as peaks at intershell regions in atoms,84-86,74,78a peak at
the bond midpoint in a molecule,87-90 step behavior in atoms
in going from one shell to the next,91,78,92and step behavior in
a heteronuclear molecule when going from one atom to the
next.93 These features are directly related to specific aspects
of electron correlation. Since the Kohn-Sham orbitals andVs(r)
are connected with the exact correlated system, one may loosely
say that all effects of electron correlation “have been folded”
into the simple one-electron potentialVs(r ). It is the purpose
of this contribution to clarify how exactly this is to be
understood.
We conclude this section by noting that the abovementioned

properties highly recommend the Kohn-Sham orbitals and one-
electron energies as tools in the traditional qualitative MO
considerations on which much of the rationalizations of
contemporary chemistry are based.94-98 It would be hard to
find a better MO theoretical context to apply concepts such as
“charge control” and “orbital control” than the Kohn-Sham
one-electron model. In case there is some fear that the Kohn-
Sham orbitals mysteriously and uncontrolably deviate from the
expected behavior, in terms of bonding and antibonding
character and behavior under perturbations (geometrical distor-
tions, interaction with other atoms/molecules), we will show
below that such fear is unwarranted since the effective one-
electron potentialVs is physically very appropiate. One may
take the view that the Kohn-Sham orbitals are just another set

of one-particle states, as so many have been proposed (Hartree-
Fock orbitals, natural orbitals, Brueckner orbitals, Dyson
amplitudes), which may very well be used to construct a one-
determinantal wave function,Ψs. Of course this cannot be the
exact wave function, and the Kohn-Sham orbitals generally
serve a different purpose than creating a reasonable single-
determinantal wave function, but there is no reason to shy away
from this Kohn-Sham determinantal wave function any more
than,e.g., from the Hartree-Fock wave function.

3. The Physics of Correlation and the Hartree-Fock and
Kohn-Sham One-Electron Theories

The exact total energy may be written as

We may break down the correlated probabilityΓ(1,2) of finding
two electrons at 1 and 2 into the independent particle part, which
is just the product of the one-electron probabilitiesF(1)F(2) and
a remainder which can be called the exchange-correlation part
of Γ, Γxc,

When an electron is known to be at position 1, the conditional
probabilityFcond(2|1) ) Γ(1,2)/F(1) of the other electrons to be
at position 2 around the reference electron at position 1 can be
written as the sum of the unconditional probability (the electron
density)F(2) and the exchange-correlation hole

The hole Fxc
hole(2|1) describes how this conditional density

deviates from the unconditional densityF(2). Since the con-
ditional density integrates toN- 1 electrons, the hole integrates
to-1. More specifically, the integral over all space of the hole
in the probability density of electrons with the same spin as the
reference electron (s2 ) s1) will be -1, and the integral over
all space of the hole in the probability density of electrons with
the opposite spin (s2 * s1) will be 0: ∫Fxchole(r2,s2)s1|1) dr2 )
-1; ∫Fxchole(r2,s2*s1|1) dr2 ) 0. Due to the Pauli principle,
which forbids two electrons to be at the same spatial position
when they have the same spin, the hole in the density of
electrons with the same spin as the reference electron has, for
r2 f r1, to become equal to minus the density of electrons with
this spin: Fxc

hole(r2fr1,s2)s1|1) ) -F(1). The precise shape of
the hole depends strongly on the system, but in general in high-
density regions in atoms and molecules the hole in the density
of electrons with the same spin as the reference electron will
have largest depth around position 1 and will go to zero far
from 1, where the presence of the reference electron at 1 is no
longer felt. The hole in the density of opposite spin electrons
will be much smaller. However, in low-density regionssor in
a low-density electron gassthe hole in the density of opposite
spin electrons may be of comparable depth and extent, although
of course it has to integrate to 0 rather than-1.

E) 〈T̂〉 + 〈V̂〉 + 〈Ŵ〉

)∫1f1′
- 1
2
∇2(1)γ(1,1′) d1+∫F(r )V(r ) dr +

1
2∫ 1r12 Γ(1,2) d1 d2 (3.1)

Γ(1,2)) F(1)F(2)+ Γxc(1,2) (3.2)

Fcond(2|1)) F(2)+
Γxc(1,2)

F(1)
) F(2)+ Fxc

hole(2|1) (3.3)

∫Fcond(2|1) d2) N- 1
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The two-electron part of the total energy may be broken up
accordingly

which defines the Coulomb potentialVCoul and the exchange-
correlation hole potentialVxc

hole at the position 1 of the reference
electron as the potentials of the full electronic densityF(2) and
the exchange-correlation hole densityFxc

hole(2|1), respectively
(VCoul is sometimes called theHartree potential VH, and another
name for the hole potentialVxc

hole is screening potentialVscr
cf.91). We note in passing that it is customary in the physics
literature to use the pair correlation factorg(1,2), in terms of
which the conditional density, hole density and exchange-
correlation part ofWxc can also be defined

The pair correlation factor (in the present definition, which uses
spatial plus spin coordinates) will be 1, so the hole has zero
depth, when 2 is at large distance from 1. It will go to 0,i.e.
the hole gets full depth-F(1), when 2f 1 (includings2 ) s1)
on account of the Pauli principle. The hole induced in the
electron distribution of other spin electrons around an electron
at 1 ) r1s1, described byg(r1s1,r2s2) with s1 * s2, need not
have full depth-F(r1s2), corresponding tog(r1s1;r1s2*s1) ) 0,
since different spin electrons retain some probability to be at
the same position. In fact, in low-density regionsg(r1s1,r2s2*s1)
does tend to to 0 forr2 f r1, but in high-density regions this
is known not to be the case.
Let us now consider the definition of exchange and correlation

in density functional theory. We wish to strongly emphasize
that these quantities do not have the same meaning in DFT as
in ab initio quantum chemistry.
Starting with the exchange energy, let us consider the energy

of the Kohn-Sham determinantal wave function,i.e. the
expectation value ofΨs with respect to the full Hamiltonian,

This defines the exchange energyWx of DFT as a Hartree-
Fock type exchange energy, but evaluated with the Kohn-Sham
orbitals. [We continue denoting all purely electron-electron
interaction energy terms withW, subscripted as the case requires;
other names for the exchange energy of DFT, each with its own
merits, areEx, or Ux, or Exc,λ)0 or Vee

λ)0 - U.] The kinetic
energyTs is simply the kinetic energy of the Kohn-Sham
orbitals. Since the exact densityF(r ) ) ∑s1F(1) determinesVs(r )
and therefore the Kohn-Sham (KS) orbitals,Ts andWx are

functionals of the density. So the exchange energy may be
written,

The conditional density of the KS determinant will by definition
only have the exchange or Fermi hole, which may be given in
terms of the exchange partΓx ) -γs(1,2)γs(2,1) by which the
two-electron density matrixΓs of the KS determinantal wave
function differs from the independent particle termF(1)F(2):

We work with pure spin orbitalsφi(1) ) æi(r1)σi(s1), where
æi is the spatial part ofφi andσi, the spin part, is eitherR or â.
So if φi(1) is an up-spin orbital,φi(1) ) æi(r1)R(s1), it will be
zero if 1 has down spin (s1 ) -1/2), andVice Versa. Taking
this into account in the above expressions forγs(1,2), Fx

hole

leads immediately to the well-known properties of the Fermi
hole of a one-determinantal wave function99 that it is definite
negative, consists of the same-spin density as the reference
electron, and has for 2f 1 (implying equal spins) a depth equal
to the density of electrons with the same spin as the reference
electron

Fx
hole(2f1|1)) -F(1) (3.8)

andzerodepth for opposite spin electrons

The present definition of the exchange energy and the Fermi
hole differs only from the traditional one in that the KS orbitals
are used rather than the Hartree-Fock orbitals. Still, this leads
to a considerable advantage when it comes to defining the
correlation or Coulomb hole. It is natural to define as the
Coulomb hole the difference between the exact conditional
density and the conditional density that has been used to define
the Fermi hole.100 SinceFcond,KS(2|1) ) F(2) + Fx

hole(2|1), this
is, with the present definitions, equal to the difference between
the full exchange-correlation hole and the Fermi hole

If we would take Hartree-Fock as our reference one-determi-
nantal state, the difference between the conditional densities
will not just be the difference between the full hole and the
(Hartree-Fock) exchange hole but will include a term describing
the difference between the exact and Hartree-Fock densities,

W) 1
2∫Γ(1,2)

r12
d1 d2) 1

2∫F(1)F(2)
r12

d1 d2+

1
2∫

Γxc(1,2)

r12
d1 d2

) 1
2∫F(1)VCoul(1) d1+ 1

2∫F(1)Vxc
hole(1) d1) WCoul + Wxc

(3.4)

Fcond(2|1)) g(1,2)F(2)) F(2)+
Γxc(1,2)

F(1)

Fxc
hole(2|1))

Γxc(1,2)

F(1)
) (g(1,2)- 1)F(2)

Wxc ) 1
2∫F(1)(g(1,2)- 1)F(2)

r12
d1 d2 (3.5)

EKS ) 〈Ψs|Ĥ|Ψs〉 ) Ts +∫FV dr + 1
2∫FVCoul dr + Wx

(3.6)

Wx ) - 1
2∫
|γs(1,2)|2

r12
d1 d2

γs(1,2)) ∑
i

N

niφi(1)φ*i(2) (3.7a)

Γs(1,2)) F(1)F(2)- γs(1,2)γs(2,1)

Γx(1,2)) -γs(1,2)γs(2,1)) - |γs(1,2)|2

Fx
hole(2|1))

-|γs(1,2)|2
F(1)

Wx ) 1
2∫F(1)Fx

hole(2|1) 1
r12

d2 d1) 1
2∫F(1)Vx

hole(1) d1 (3.7b)

Fx
hole(r2,s2*s1|1)) 0 (3.9)

Fc
hole(2|1)) Fcond(2|1)- Fcond,KS(2|1))

Fxc
hole(2|1)- Fx

hole(2|1) (3.10)
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The term∆F(2)) F(2)- FHF(2) may not be small (see below),
in particular when compared to the difference between the full
and exchange holes, and in a way would contaminate the
definition of the Coulomb correlation hole. Using the definition
(3.10) we write the correlation partWc of the two-electron
energy as

From the definition it is obvious that the Coulomb hole
integrates to zero. Many examples of Fermi and Coulomb holes
are provided in refs 100 and 101, from which certain charac-
teristics can be deduced. In atoms, the Coulomb hole has a
typical “polarization” shape: if the reference position is close
to the nucleus, probability (“charge density”) is lowered around
the nucleus and enhanced at the outside of the atom; if the ref-
erence position is at the outside, the reverse “polarization” takes
place; if the reference position is in between, in the middle of
the electron cloud, charge is “pushed away” around the reference
electron and increases at the backside of the nucleus. The
Coulomb hole for an electron pair bond will be discussed below.
Turning now to the definition of the correlation energy, we

note that for a long time quantum chemists have agreed to define
the correlation energy as the difference between the exact and
Hartree-Fock energies,Ecorr ) E - EHF. The well-known
quantityExc of DFT is howevernot the sum ofWx

HF andEcorr
(and neither ofWx andEcorr). We arrive atExc by following
Kohn and Sham66 in writing the exact total energy not in the
traditional way

but, usingTs, as

Since all other quantities in this expression are defined, this
equation definesExc

where we have introduced the usual notationTc for the
correlation correction (with respect toTs) to the kinetic energy.
It is customary to define as the correlation energyEc of DFT
the nonexchange part ofExc, Ec ) Exc - Wx. (n.b. to distinguish
traditional quantities, such as the Hartree-Fock exchange
energy, from the present DFT quantities, we will give them the
explicit superscript HF. Ec

HF will be used to denote the
traditional correlation energy.) Evidently, the correlation energy
of DFT is just the difference between the exact energy (3.14)
and the Kohn-Sham determinantal energy (3.6),

Since the Hartree-Fock determinant is by definition the one
with the lowest possible energy,EKS must necessarily be higher
thanEHF, and the DFT correlation energy must be more negative
(larger in an absolute sense) than the traditional correlation

energy.102,103

The correlation energy as defined here consists of only two
terms, a kinetic and an electron-electron interaction part,

The difference between the DFT and traditional definitions
of correlation is often ignored and correlation functionals are
usually judged by their performance in reproducing the tradi-
tional correlation energy, which is often the only one known to
a reasonable degree of accuracy. It has indeed been demon-
strated that the traditional and DFT definitions do not differ
much for two-electron atoms.103 However, we wish to stress
that the difference is rather essential,104 if not numerically then
at least conceptually. Since the Hartree-Fock energy uses the
Hartree-Fock one-electron densityFHF

which differs from the exact density by an amount∆F ) F -
FHF, the traditional correlation energy may be written as

The termsTc
HF andWc

HF of Ec
HF will be different from the

corresponding termsTc andWc of Ec, sometimes quite essentially
so, as we will see below, butEc

HF also contains the additional
termsVc

HF, the correlation correction to the electron-nuclear
potential energy, andWCoul,c

HF , the correlation correction to the
Coulombic part of the electron-electron potential energy.
These two terms of course also makeExc

HF ) Wx
HF + Ec

HF

essentially different fromExc,

In order to appreciate the difference betweenEc
HF andEc, we

have given in Table 1 the various terms ofEc
HF, for a series of

common molecules.100,101 The CI calculations from which these

Fc
hole,HF(2|1)) Fcond(2|1)- Fcond,HF(2|1))

(F(2)- FHF(2))+ Fxc
hole(2|1)- Fx

hole,HF(2|1) (3.11)

Wc ) Wxc - Wx ) 1
2∫F(1)Fc

hole(2|1) 1
r12

d2 d1)

1
2∫F(1)Vc

hole(1) d1 (3.12)

E) T+∫FV dr + 1
2∫FVCoul dr + Wxc (3.13)

E) Ts +∫FV dr + 1
2∫FVCoul dr + Exc (3.14)

Exc ) (T- Ts) + Wxc ) Tc + Wxc (3.15)

Ec ) Exc - Wx ) E- EKS (3.16)

TABLE 1: Contributions (in eV) to the Traditional
Correlation Energy Ec

HF for Selected Molecules

Ec
HF Tc

HF Vc
HF WCoul,c

HF + Wc
HF

H2 (R) Re) -1.1 +1.3 -0.5 -1.9
H2 (R) 5.0 au) -3.9 +8.9 -8.5 -4.4
H2 (R) 10.0 au) -6.3 +7.9 -8.4 -5.6
MnO4

- -14.4 +35.7 -115.5 +65.4
Ni(CO)4 -3.4 -35.0 +147.8 -116.3
Cr(CO)6 -4.5 -4.5 +30.8 -30.8
He -1.1 +1.1 -0.1 -2.1
H2O -7.0 +6.5 +1.0 -14.5
Ne -8.9 +8.3 +1.3 -18.5
N2 -11.1 +13.7 -13.8 -11.0

Ec e Ec
HF (3.17)

Ec ) Tc + Wc (3.18)

EHF ) THF +∫FHFV dr + 1
2∫FHF(1)FHF(2)

r12
d1 d2+ Wx

HF

(3.19)

Ec
HF ) E- EHF

) T- THF +∫∆FV dr +∫∆F(1)F(2)
r12

d1 d2+

1
2∫∆F(1)∆F(2)

r12
d1 d2+ Wxc - Wx

HF (3.20)

) Tc
HF + Vc

HF + WCoul,c
HF + Wc

HF

Exc ) Tc + Wxc

Exc
HF ) Tc

HF + Wxc + Vc
HF + WCoul,c

HF (3.21)
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numbers have been derived have yielded a large percentage of
the correlation energy for the light systems, but not nearly so
for the transition metal complexes.100,105,106 The numbers will
only be used qualitatively here. We first observe that the
widespread feeling that the electron density is described well
by the Hartree-Fock wave function and that correlation mainly
affects the two-electron part of the energy by building a proper
Coulomb hole around a reference electron, is not corroborated
by the results in the table. A striking example is dissociating
H2 (the comparison is with arestrictedHartree-Fock wave
function). Taking the correlation correction to the electron-
nuclear energyVc

HF as a measure of the quality of the Hartree-
Fock electron density, it is clear that this density must be very
poor at larger bond distances. Not even at the equilibrium
distance isVc

HF really small, but it becomes even much larger
than the electron-electron correlation energy at 5.0 and 10.0
bohr. Both the one-electron termsVc

HF and Tc
HF are much

larger than the electron-electron term, and at 10.0 bohr the
electron-nuclear correlation energy is the largest of all terms.
It should be appreciated that a Kohn-Sham calculation (again
we just take arestricted calculation) would for H2 at large
distance give the exact density, and therefore theVc term would
disappear, but also that the kinetic correlation energyTc would
be 0107since the Kohn-Sham orbital would in the region around
each hydrogen atom be just a hydrogenic 1s atomic orbital,
yielding the right limiting kinetic energy of two hydrogen atoms.
Before we continue to analyze the H2 case in more detail, it
should be clear that this example, even if somewhat special, is
by no means exceptional in having large correlation terms
associated with density changes. The transition metal com-
plexes, even if the CI calculations were far from complete, show
tremendous correlation energies, in particular in view of the
usually rather weak coordination bond. Note that in MnO4

-

the electron-electron energyincreases, indicating closer prox-
imity of the electrons as a consequence of electron correlation.
The correlation effects in this molecule have been discussed
extensively in ref 105. As a matter of fact, only the very light
systems such as He conform to the expectation that theVc

HF

term will be small and that the correlation correction to the
potential energy is mostly an electron-electron interaction
energy correction. In this case, in keeping with the virial
relationship, the total correlation correction to the electron-
electron interaction energy,WCoul,c

HF + Wc
HF, is about twice as

large as the correlation energy which itself is equal (but with
opposite sign) to the kinetic correctionTc

HF. A simple mol-
ecule like N2 however, has a very large electron-nuclear
correlation energy, considerably larger than the electron-
electron term. This demonstrates that the DFT correlation
energy, with a zero electron-nuclear term, even if it would not
numerically differ much from the traditional correlation energy,
will have a very different composition.
In order to understand these results better, and to prepare for

the discussion of the Kohn-Sham potential and the exchange-
correlation energy density in the next section, we show in Figure
1 plots of the Fermi, Coulomb, and total holes in H2 at various
distances.100,101 The Fermi hole in a two-electron system only
consists of the self-interaction correction and is equal to the
density of the electron with the same spin as the reference
electron, which is half the total density. Although the hole is
only plotted for a reference electron at a position 0.3 bohr at
the left of the right nucleus, it should be emphasized that the
Fermi hole is completely independent of the position of the
reference electron. It is totally inadequate as an approximation
to the total hole, in particular at long bond distances. At such
distances, a reference electron close to the right nucleus should

experience the nuclear attraction of that nucleus unscreened,
and it will not be perturbed much by the fully screened nucleus
of the other H atom. The Fermi hole, however, removes only
half of the density, not the complete density, around the
electron’s own nucleus, so that the nucleus is (incorrectly) partly
screened and the electron will respond by building a too diffuse
orbital. This is putting in the language of “effective one-electron
potentials” the well-known deficiency of the Hartree-Fock
wave function, leading to unwarranted ionic configurations. It
should be realized, however, that the largest effect is not an
error in the two-electron part of the energy but that the one-
electron density becomes so diffuse that the largest error occurs
in the electron-nuclear energy.
The Coulomb hole has the typical shape of creating a hole

around the reference electron and causing buildup of charge
further away at the other nucleus (the Coulomb hole integrates
to zero). At a large interatomic distance the Coulomb hole
obviously takes care that the total hole around the reference
electron is equal to the total density at that nucleus, and at the
other nucleus it cancels the Fermi hole, so the full electron
density is undisturbed at the other hydrogen atom, as it should.
It is important to note that the Coulomb and total holes cannot
be static. When the reference position moves along the bond
axis and crosses the bond midpoint, the hole will have to switch
to the other nucleus. So the total hole will be invariant with
respect to the reference position when it is somewhere in the
neighborhood of one nucleus, but there will be a region of rapid
change in the neighborhood of the bond midpoint.
The too weak nature of the Fermi hole around the reference

electron and its static nature are deficiencies that make the
Hartree-Fock model seriously deficient in any electron pair
bond, more so in weaker bonds and when there are multiple
bonds. Extreme examples occur for bonds involving transition
metal atoms,e.g.the 5-fold bond between Mn and the O4 cage
in MnO4

- 105 (cf. also MnO+ 108) and the famous case of Cr2

with a weak 6-fold bond,cf. discussion in ref 109.
As we have argued here, the DFT definition of the correlation

energy has some aesthetically and physically appealing features.
Nevertheless, it has the major drawback that it is not a good
operational definition, as the traditional one is. It is not at all
easy to obtain the Kohn-Sham limit of an atom or molecule.
If an exact or very accurate wave function is not known, this is
at present impossible; even if the latter is known it is by no
means straightforward to obtain the KS determinantal wave
function, though progress is being made.74,89,90,110-112

4. The Exact (DFT) Exchange-Correlation Energy
Density and the Kohn-Sham Potential

We first show that the Kohn-Sham one-electron operatorĥs
differs from the Fock operatorf̂ only in that the exchange part
of f̂ is replaced by the local potentialVxc(r ) ) δExc[F]/δF(r ).
Note thatExc is a functional ofF since all the other terms in
3.14 are functionals ofF. Replacing in the variationally stable
functionalEv[F] [(2.6)] T[F] + Wxc[F] by Ts[F] + Exc[F] (which
definesExc[F]) we obtain

We use for simplicity of notation space-spin coordinates (like
1) r1s1) throughout, although the external potential is as usual
assumed to be spin-independent ((V(r1,+1/2) ) V(r1, -1/2) )
V(r1)) and also the Coulomb potential is onlyr -dependent.Ev-
[F] attains its minimum value at the ground state densityF0, so

EV[F] ) Ts[F] +∫V(1)F(1) d1+

1
2∫F(1)VCoul(1) d1+ Exc[F] (4.1)
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using the Lagrange multiplierµ to keep the density properly
normalized toN electrons, the variational stability requires that

Also the functionalEs[F] [(2.7) for the noninteracting system]
attains its minimum for the densityF0, sinceVs is by definition

the potential for which the ground state density of the nonin-
teracting system is identical to the one for the interacting system,

This shows thatVs is, apart from a constant, equal to the
functional derivative ofTs, and the question of the existence of

Figure 1. The Fermi hole, Coulomb hole, and total hole in the H2 molecule at various values of the internuclear distance. In all plots the reference
electron is placed 0.3 bohr to the left of the right nucleus. Nuclear positions are indicated with black dots on the axis.

δ
δF
[EV[F] - µ(∫F(1) d1- N)]F0 ) 0

δTs
δF(1)

|F0 + V(1)+ VCoul(1)+
δExc
δF(1)

|F0 - µ ) 0 (4.2)

δ
δF
[Es[F] - µ(∫F(1) d1- N)]F0 ) 0

δTs
δF(1)

|F0 + Vs(1)- µ ) 0 (4.3)
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Vs is equivalent to the question of existence of this functional
derivative. The possibility that we have a spin-polarized system
with different Kohn-Sham potentials for different spins,i.e.
Vs(r1,s1 ) 1/2) ) Vs,R(r1) different fromVs(r1,s1 ) -1/2) ) Vs,â(r1),
is automatically accounted for through our use of space-spin
coordinates, although we will not explicitly use it in this paper.
In that case the functional derivative with respect to the density
of up-spin electrons,δTs/δF(r1,s1 ) 1/2) ) δTs/δFR(r1), yielding
Vs,R(r1), may differ from that with respect to down-spin electrons.
Eliminating δTs/δF from (4.2) and (4.3) and writingVxc )
δExc[F]/δF, we obtain forVs, apart from a constant,

Exc and Vxc are obviously the crucial quantities of DFT.
Traditional ab initio quantum chemistry tries to improve
properties, in particular energetics, basically by trying to increase
the accuracy of the wave function. Density functional methods
on the other hand try to obtain good energetics by trying to
develop more accurate models for the exchange-correlation
energy density per particleεxc, from which the exchange-
correlation energyExc may be obtained

εxc should be a functional of the density, and models have been
derived initially from the electron gas, using at pointr the
properties of the homogeneous electron gas with uniform density
F equal to the densityF(r ) that the finite system has locally
(the local-density approximation). The gradient expansion for
systems of varying electron density has some difficulties, so
generalized gradient approximations have been developed for
the exchange part5,7,10and correlation part6,8,10 that expressεxc
in terms of local properties of the density at pointr (its value,
and the value of the gradient or Laplacian),

We may also exploit the essential simplicity ofExc (it just
consists of the two termsWxc andTc) to obtain and study the
exactεxc.90,113 Introducing the so-called kinetic potentialsVkin
andVs,kin87,91,93we may write

The hole potentialVxc
hole has already been introduced, but in

order to clarify the physical meaning of the kinetic potentials
we need to factorize the wave functionΨ in the so-called
marginal ((F/N)1/2) and conditional (Φ) probability amplitudes
introduced by Hunter114

The conditional probability amplitudeΦ describes all effects
of electron correlation, since its square

represents the probability distribution of the other electrons
around a reference electron at position 1. The kinetic potential
is related to the rate of change of the conditional probability
distribution of the other electrons with respect to change in the

position of the reference electron87

There are two well-known situations where the exchange-
correlation hole rapidly changes with reference position. The
first is related to change of the Fermi hole. The Fermi hole is
known to have approximately the shape of the localized orbital
at reference positions where most of the total charge can be
ascribed to one particular localized orbital.115 When the
reference position crosses the border region between the
localized orbitals, the Fermi hole undergoes rapid change. In
atoms the Fermi hole is to a large degree localized within the
shell where the reference position is located (the atomic shells
are not only energetically but also spatially quite well separated)
and rapid “jumping” of the hole occurs when going from one
atomic shell to the next. This leads to peaks inVkin in atoms87
which we will not discuss here. In the case of an electron pair
bond we have noted the rapid change of the Coulomb hole when
the reference position crosses the bond midpoint. It has indeed
been observed thatVkin exhibits a sharp peak around the bond
midpoint in H2 at large bond distance.87

It has been shown that the kinetic energy can be written as
the sum of the so-called Weizsa¨cker kinetic energy, which isN
times the kinetic energy of an electron in the “density orbital”
(F/N)1/2 and the integral of the density times the kinetic potential

Since the density is exactly the same for the Kohn-Sham wave
function and the exact wave function,TW, is the same forT
andTs, so indeed

The kinetic correlation energy density per particleVc,kin ) Vkin
- Vs,kin, which is written as a potential for reasons to become
clear below, is truly related to the Coulomb correlation. The
Kohn-Sham determinantΨs and the related conditional prob-
ability amplitudeΦsembody only the Fermi hole, soVs,kin, which
is related toΦsby (4.10), only reflects the mobility of the Fermi
hole. In the electron pair bond we have seen thatVkin will exhibit
a peak at the bond midpoint due to the switching of the Coulomb
hole from one nucleus to the other.Vs,kin, however, is
everywhere zero in a two-electron system since the Fermi hole
is completely static. This follows also immediately when one
writesVs,kin in terms of molecular orbitals, which is possible in
view of the simple one-determinantal nature ofΨs

Since in the closed shell two-electron case there is only one
doubly occupied Kohn-Sham orbital withφ1(1)) (F(1))1/2 Vs,kin
will be zero.

Vs(1)) V(1)+ VCoul(1)+ Vxc(1) (4.4)

Exc )∫F(1)εxc(1) d1 (4.5)

εxc
GGA(1)≈ f (F(1),∇F(1),∇2F(1),...) (4.6)

Exc ) Wxc + T- Ts ) 1
2∫F(1) Vxc

hole(1) d1+

∫F(1)(Vkin(1)- Vs,kin(1)) d1 (4.7)

Ψ(1,2,...,N) )xF(1)
N

Φ(2,...,N|1) (4.8)

|Φ(2,...,N|1)|2 )
|Ψ(1,2,...,N)|2

F(1)/N
(4.9)

Vkin(1)) 1
2∫|∇1Φ(2,...,N|1)|2 d2 ... dN)

∇1′∇1γ(1,1′)|1f1′

2F(1)
-
|∇1F(1)|2

8F(1)2
(4.10)

TW ) N∫xF
N(-

1
2
∇2)xF

N
dr

T) TW +∫FVkin d1

Ts ) TW +∫FVs,kin d1 (4.11)

Tc )∫F(Vkin - Vs,kin) d1)∫FVc,kin d1 (4.12)

Vs,kin(1))
1

2
∫|∇1Φs(2...N|N)|2 d2 ... dN)

1

2
∑
i)1

N

|∇1
φi(1)

xF(1)
|2

(4.13)
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We now obtain the following simple and closely related
expressions for the exchange-correlation energy density and
the exchange-correlation potential

These are the central equations of this paper. The functional
differentiation ofExc[F] ) ∫Fεxc([F];1) d1 leads immediately
to the termsVxc

hole andVc,kin in Vxc (the factor of1/2 in front of in
the expression forεxc disappears inVxc due to the double
occurrence ofF in (3.5) forWxc). The response termVresp of
Vxc contains the terms with functional derivatives of the kinetic
potentials and the pair correlation functiong(1,2)91 (see (6.1)).
We will defer a discussion of the so-called response part of
Vxc, Vresp,78,91-93 which will be the least familiar entity in (4.14),
to section 6.
Since we have shown how these quantities are related to the

exact wave function, we may actally obtain them from exact
(very accurate) wave functions and study them. This provides
a method to judge existing model expressions forεxc andVxc
and to develop better models when needed. It should be noted,
however, thatεxc is not a unique function ofr . Different spatial
functionsεxc may yield the same integratedExc. This is well
known for the kinetic energy density, where partial integration
may lead to an alternative kinetic energy density that also
integrates to the same kinetic energy

Similarly, an alternative exchange-correlation energy density
is often defined by the use of the so-called coupling constant
integration,116-118 which leads to an exchange-correlation
energy densityεjxc(1) that is the potentialVjxc of an “averaged”
exchange-correlation hole that has the kinetic effects incor-
porated. We, however, stick to (4.14) since it follows very
straightforwardly from the definition ofExc and has terms that
have a clear physical meaning (see also below) and are clearly
connected with the corresponding terms in the Kohn-Sham
potential (whichis a unique function ofr ). Moreover, they
can be calculated from accurate wave functions, which is at
present not possible with the alternative coupling constant
integratedVjxc. It is to be emphasized that the potentialsVkin
and Vs,kin, and therefore alsoVc,kin, even though they are also
(partial) kinetic energy densities, are well-defined functions of
r . In this context it is interesting to note the equality

which is not based on partial integration (the integration is not
over coordinate 1) but has been proven in ref 87 from the
normalization ofΦ(2...N|1) at any point 1.
Let us consider the calculation ofεxc andVxc of (4.14) from

accurate wave functions. The following steps have to be
taken: (1) A large-scale CI calculation may provide us with
accurate, correlatedF(1), γ (1,1′), andΓ(1,2). (2)Vxc

hole(1) may
be obtained straightforwardly fromΓ(1,2) andF(1),

(3) Vkin may be obtained straightforwardly fromF(1) andγ (1,1′)
according to (4.10). (4)Vs,kin may be obtained from (4.10) with
γs(1,1′) substituted forγ (1,1′), or alternatively from (4.13).
Obviously, for this the Kohn-Sham orbitals are needed, which
can be obtained ifVs is known. This is actually the hard part
of the procedure. Many attempts have been made to generate
from a given densityF(1) theVs that uniquely corresponds to
it.74,84-87,110,111,119-124 Most of these methods have been applied
to atoms, some are indeed only suitable for spherically sym-
metric and/or few-electron systems. To date, the only methods
that have been applied to molecules89,90,112are those of Van
Leeuwen and Baerends74,89,90and the method of Zhao, Morrison,
and Parr.111,112,122 Since the accurate CI density is usually
obtained from a Gaussian basis set calculation, there are
considerable technical difficulties in obtaining an accurateVs.
The “accurate” density is usually inaccurate both close to the
nucleus and in the tail of the density due to the properties of
the Gaussians. There are also more fundamental problems
connected with the requirement of generating the values of the
function Vs(1) at all points in space from a set of data that is
necessarily limited due to the finiteness of the basis. Fortu-
nately, these problems do not prohibit the generation of
reasonable potentialsVs(1) and in particular Kohn-Sham orbitals
{φi}. Only the Kohn-Sham orbitals are needed to obtainVs,kin,
but Vs(1) is also required if we want to obtainVresp, which is
just the difference ofVs, i.e. Vxc and the potentialsVxc

hole and
Vc,kin that were already determined.
In the next section we will show some exact exchange-

correlation energy densities for very simple systems (He,
dissociating H2). These at the same time provide, of course, a
view of the Vxc

hole and Vc,kin components of the Kohn-Sham
potentialVs. Some effects of the response part ofVs will be
mentioned, butVrespwill be discussed more fully in section 6.

5. Kohn-Sham Potentials and Correlation Energy
Densities in He and H2

In order to focus on the effects of electron correlation, we
consider specifically the correlation energy density and the
correlation potential

Since Γs(1,2) is the two-density of the Kohn-Sham one-
determinantal wave functionΨs, it is determined by the one-
density γs(1,2) through the relationΓs(1,2) ) F(1)F(2) -
γs(1,2)γs(2,1),cf. (3.7b), and can be obtained directly from the
Kohn-Sham orbitals. The exchange potentialVx that is
subtracted fromVxc to obtain the correlation potential, is the
potential of the Fermi hole plus a corresponding response part.
As a matter of fact, the response part ofVx is zero in two-electron
systems, so in the examples belowVc

resp(1) is actually also the
response part of the fullVxc and the c subscript can be omitted.
In Figure 2 we show the componentsVc,kin and1/2Vc

hole of εc for
H2 atRe and at large distance (5.0 au) and for He. Note that at
Re (Figure 2a) the Coulomb hole potential is attractive around
the hydrogen nuclei and clearly makes the largest contribution
to εc, but Vc,kin is by no means negligible [Vc,kin is equal toVkin

εxc ) 1
2
Vxc
hole+ Vc,kin

Vxc ) Vxc
hole+ Vc,kin + Vresp (4.14)

T) -∫1
2
∑
i

niφ*i∇2φi d1) +∫1
2
∑
i

ni|∇φi|2 d1 (4.15)

Vkin(1))∫Φ*(2...N|1)(-12∇2)Φ(2...N|1) d2 ... dN)

1
2∫|∇1φ(2...N|1)|2 d2 ... dN (4.16)

Vxc
hole(1))∫Γ(1,2)- F(1)F(2)

F(1)
1
r12

d2 (4.17)

Wc ) Wxc - Wx )∫F(1)εc(1) d1

εc(1)) 1
2

Vc
hole(1)+ Vc,kin(1))

1
2∫

Γ(1,2)- Γs(1,2)

F(1)
1
r12

d2+ Vc,kin(1)

Vc(1)) Vxc(1)- Vx(1)) Vc
hole(1)+ Vc,kin(1)+ Vc

resp(1) (5.1)
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in this two-electron case and therefore positive definite according
to the defining equation (4.10)]. In particular,Vc,kin clearly
exhibits a maximum at the bond midpoint, as we expected on
the basis of the switching of the Coulomb hole in that region.
Considering the corresponding correlation potentialVc in Figure
3a, one notes that the response potential makes a rather strong
positive contribution. It diminishes significantly the attractive
nature ofVc

hole around the nucleus and combined withVc,kin the
effect of Vresp is to makeVc just positive around the bond
midpoint. The relatively small net contracting nature ofVc is
in agreement with the relatively small negative electron-nuclear
correlation correction of-0.5 eV in Table 1. These effects

become magnified in the large-distance situation (R) 5.0 bohr)
of Figures 2b and 3b (note the difference in scale with Figures
2a and 3a). The Coulomb hole potential is strongly attractive
around the hydrogen nuclei. SinceVresp is negligible in this
particular case, the Kohn-Sham potentialVs basically differs
from the Fock operator (which is also just a local potential in
this case) by the termsVc

hole + Vc,kin, and it is clear that in
particularVc

hole will make the Kohn-Sham orbitals much more
contracted around the H nuclei than the Hartree-Fock orbitals.
This is precisely what is needed of course, since we have seen
that the largest error in the Hartree-Fock case was due to the

Figure 2. The correlation energy densityεc(r ) and its componentsVc,kin () Vkin in these cases) in three cases: (a) plotted along the bond axis of
H2 at R(H-H) ) 1.401 bohr (Re) (the bond midpoint is atz ) 0.0); (b) idem, atR(H-H) ) 5.0 bohr; (c) for He.
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much too diffuse nature of the Hartree-Fock density, caused
by the too strong screening of the nuclei by half of the other
electron that does not go away to the other nucleus. Equiva-
lently, the exchange hole potential is too weak and has to be
deepened by the Coulomb hole potential. The fact that inVs
the full exchange-correlation hole potentialVxc

hole features, and
not just the Fermi hole potentialVx

hole, explains why a restricted
Kohn-Sham calculation on dissociating H2 can yield just the
sum of two H atom densities. The potentialVxc

hole may be
considered to incorporate the information on what the condi-

tional probability distribution of the other electrons is “momen-
tarily”, i.e. when the reference electron is at position 1; the
kinetic potential on the other hand is related to the “dynamics”
of the hole. It has a large bond midpoint peak in H2 at large
bond distance since the Coulomb hole is changing strongly as
a function of reference position around the midpoint. The large
peak ofVc,kin occurs in a region where the electron density is
small. Its contribution toVsmay help to build the exact density,
contributing to the “confinement” of charge around the H
nucleus by the large wall it provides, but its effect on the energy

Figure 3. The correlation potentialVc and its componentsVchole, Vc,kin () Vkin in this case), andVresp () VN-1 in this case) for the cases: (a) plotted
along the bond axis of H2 at R(H-H) ) 1.401 bohr (Re) (the bond midpoint is atz ) 0.0); (b) idem, atR(H-H) ) 5.0 bohr; (c) for He.
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by its contribution toεc will be very much smaller than the one
of Vc

hole since the latter is large where the density is also large.
This example also very simply demonstrates how DFT works.

Whereas the Kohn-Sham determinantal wave functionΨs is,
of course, in an energetic sense an even poorer wave function
than the Hartree-Fock determinant, the Kohn-Sham potential
does build a correct density, much in contrast to Hartree-Fock
and mostly by the presence ofVc

hole and to some extentVc,kin
andVresp. The correct energy is then provided by the incorpora-
tion in the energy density of the correlation effects, mostly by
1/2Vc

hole and to some extent byVc,kin.
The case of He (Figures 2c and 3c) is interesting since it is

the classical case of purely dynamical correlation and it
conforms to the expectation of reasonably accurate density at
the Hartree-Fock level. The figures show thatVc,kin is smaller
than 1/2Vc

hole, but it is not completely negligible. If only the
componentsVc

hole and Vc,kin of Vc would be present, it is clear
that Vc would be rather attractive around the nucleus. It is in
this case the response partVresp that actually cancels most of
the attraction due toVc

hole, so that the totalVc is rather small
everywhere and has the characteristic shape, observed by several
authors,84,85,87,119,123of being attractive close to the nucleus and
repulsive further out.Vc does not have a large net effect on the
electron density in this case.
It is interesting to make a comparison113between the present

“exact” correlation energy density (note, however, the remark
above about the nonuniqueness of the energy density) and the
currently used model correlation energy densities. We take the
local-density approximation (LDA) for the correlation energy
density in the Perdew-Wang parametrization,125 the local
Wigner (LW) function,126and the gradient-dependent Perdew-
Wang (PW),10,11 Lee-Yang-Parr (LYP),8 and Wilson-Levy
(WL)127 models. In Figure 4 our “exact”-F(r)εc(r) ) -ec(r)
from a large CI calculation on He is compared to the model
correlation energy densities. The various modelec(r) functions
have quite different local behavior. In Figure 4a we focus on
the inner region, between 0.0 and 0.5 bohr, where the contribu-
tion 1/2Vc

hole dominates (cf. Figure 2c). It is known that the
Coulomb hole in this region represents mostly in-out correla-
tion, being negative around the nucleus and the reference
electron and positive further outward.100 The resulting negative
1/2Vc

hole and εc in this region are clearly underestimated by all

model functionals (except for the nuclear peak ofεc
WL which

has no energetic effect due to the vanishingly small volume).
Since most of the model energy densities integrate to the correct
correlation energysparameters in all of the model functionals
except PW have been fitted to obtain this exactly or ap-
proximately for Hesthe underestimation at smallr has to be
compensated by overestimation at largerr. This is demonstrated
in Figure 4b, where the multiplication by 4πr2 exhibits more
clearly the contribution to the integral from variousr regions.
In the region 0.5-1.4 bohr, where the Coulomb hole has a
characteristic polarization shape,100 all the model energy densi-
ties are larger (i.e. more negative) thanεc. All the radial
functions -4πr2F(r)εc

mod(r) corresponding to model energy
densities have their maximum aroundr ) 0.5 bohr, while the
maximum in-4πr2F(r)εc

mod(r) occurs at somewhat shorterr
(ca. 0.3 bohr). In Figure 5 the same comparison is made for
the H2 molecule atRe (Figure 5a) and at large bond distance
(5.0 bohr) (Figure 5b). The values ofF(z)εc(z) are plotted for
z along the internuclear axis (bond midpoint atz ) 0). It is
clear that there are considerable discrepancies between the
“exact” correlation energy density and the model energy
densities, as well as large differences among the latter. The
models using density gradients were parametrized from atomic
data (LYP, WL) or obtained from the gradient expansion for
the inhomogeneous electron gas with suitable cutoffs (PW).
However, with regard to density gradients there is a basic
difference between atoms and molecules. For atoms|∇F(r )| is
never small, while for molecules it is close to zero in the bond
midpoint region. One can expect also that correlation effects
in this molecular region differ from those in the homogeneous
or weakly inhomogeneous electron gas. Because of this,
εc
mod(r ) may have a rather accidental behavior in the bond
midpoint region. Figure 5a shows that indeed there is rather
different behavior of the various energy density functions in
the region between the nuclei for the equilibrium H-H distance.
The exactF(z)εc(z) has a pronounced maximum atz ) 0,
approaching zero (from below) at that point. The bond midpoint
peak inVc,kin is largely responsible for this; see Figure 2a. The
model functionals seem to lack this feature. Although they have
maxima at the bond midpoint, they are considerably more
shallow functions ofz than is F(z)εc(z). The Wilson-Levy
energy density exhibits a sharp minimum atz ) 0. Around

Figure 4. Correlation energy density in He compared to a number of model correlation energy densities: PW, Perdew-Wang;11 WL, Wilson-
Levy;127 LYP, Lee-Yang-Parr;8 LW, local Wigner.126 (a) -F(r)εc(r) from r ) 0.0-0.5 bohr. (b)-4π r2F(r)εc(r) from r ) 0.0-2.0 bohr.

Feature Article J. Phys. Chem. A, Vol. 101, No. 30, 19975395



the nucleus the various model energy density functions are
similar to those found for the He atom, as may be expected
from their dependence on the density. However, it should be
noted that the underlying correlation is very different. The
Coulomb hole is now due to left-right correlation rather than
in-out correlation. This difference becomes manifest in the
outer tail. Whereas in He the model energy densities become
more negative thanF(z)εc(z) at distances from the nucleus larger
thanca.0.4 bohr, in H2 F(z)εc(z) remains more negative in the
complete tail region. This may be understood from the strong
left-right correlation that will be present when the reference
electron is at these positions. This difference in the physics of
the correlation compared to He is clearly not recognized by the
model correlation functionals. Obviously, there will again be
compensation of errors, the model functionals giving more
negative contributions around the bond midpoint. The failure
of the model functionals to describe left-right correlation
becomes very clear in the case where this type of correlation
becomes very strong, in the near-dissociation situation,R(H-
H) ) 5.0 bohr (Figure 5b). The exactF(z)εc(z) exhibits wide
and deep wells around the nuclei (cf. Figure 2b). Contrary to
this, all model functionals exhibit much smaller wells around
the nuclei. The model energy densities are completely deter-
mined by the local electron density and its gradient, which are
practically the same as in the H atom. The model functionals
cannot recognize from these local properties of the density the
strong left-right correlation. They will, in fact, integrate to
almost the same correlation energy (-0.03 to-0.06 au) as for
the equilibrium H-H distance, whereas the exact correlation
energy is-0.3125 au.128 As a matter of fact, the gradient-
corrected density functionals for exchange deviate by ap-
proximately the same amount from the exact exchange, so that
the total Exc

mod is fairly accurate (see ref 107 for a more detailed
comparison). The compensation of errors in the correlation
functionals by opposite errors in the exchange functionals seems
to be fairly systematic, resulting in accurate totalExc values
from the existing gradient-corrected total functionals.
We may end this section with a comment on the desirability

of separating exchange and correlation. It has been recognized
for a long time2,129,130that the exchange-only LDA (XR, R )
2/3) hole already captures some essential physics in the case of
dissociation or weak interaction by employing, by construction,
a hole that is centered around the reference electron (with

maximum depth at the reference position). The same holds for
the full LDA exchange-correlation hole, not by the use of
electron-gas correlation but irrespective of it, simply by the
translational symmetry dictated hole-centering around the refer-
ence electron, where the hole is dominated by the “exchange”
part. References 129 and 130 stress how deficient the Hartree-
Fock hole actually is in many cases due to its too diffuse nature.
This goes some way in explaining the relative success (if one
takes HF as the reference) of a rough hole modeling like that
applied in XR. The results in this section and in section 3
demonstrate how pathetically inadequate the exchange hole is;
it makes restricted HF for dissociating unpaired spin systems
completely sizeinconsistent. One may take the view that the
LDA hole is actually overshooting and is too localized around
the reference electron and that one should therefore build in
some amount of “exact exchange” to make the hole somewhat
more diffuse. This is one way to view Becke’s25,26successful
application of hybrid functionals, which has proven very fruitful
for systems at equilibrium geometries. The precise amount of
exact exchange may, however, not be the same for all systems
and situations. For instance, it is possible to define the amount
of pure exchangeWx that has to be mixed with the exchange-
correlation part of the two-electron energyWxc to obtain for
Exc the exact relation,107,131

and it is then easily demonstrated that in H2 upon dissociation
C has to go to zero. This agrees with the unphysical nature of
pure exchange at the dissociation limit. It has been suggested
to redefine “exchange” so that it incorporates the near-
degenaracy correlation we are dealing with in this example.132

We believe that, for the purpose of hole modeling, our results
so far also provide good arguments in favor of dispensing with
the distinction between exchange and correlation altogether.

6. Response Part of the Kohn-Sham Potential

The response part of the Kohn-Sham potential is probably
the least well-known part ofVs and maybe the least physically
transparent. It plays, however, a significant role in building
the effective one-electron potential of the Kohn-Sham model,
as we have seen in the previous section. We therefore discuss
its derivation and properties in this section.

Figure 5. Correlation energy density in H2 atRe (a) and atR) 5.0 bohr (b) compared to model correlation energy densities. See caption to Figure
4. z is the coordinate along the internuclear axis; the bond midpoint is atz ) 0.0.

Exc ) CWx + (1- C)Wxc (5.2)
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Taking the functional derivative ofExc leads directly to the
the potentialsVc,kin ) Vkin - Vs,kin andVxc

hole, and, in addition, to
terms in which the functional derivatives of these potentials
enter:

This potential is a measure of the sensitivity of the correlation,
embodied in the conditional probability amplitude and hence
in the kinetic potentials and the pair correlation function, to
density variations. These density variations are to be understood
in the following way. If the density changes toF + δF, then
according to the Hohenberg-Kohn theorem this changed density
corresponds uniquely to an external potentialV + δV (we only
consider densities that areV-representable). For the system with
external potentialV + δV we have the corresponding pair-
correlation functiong([F + δF];1,2) and kinetic potentials. So
the derivatives occurring in the response potential may be
regarded to reflect the linear response of the system to density
changesδF caused by potential changeδV.
It is gratifying, and a considerable help in understanding the

physics ofVresp, that it is possible87 to relate this term in the
Kohn-Sham potential, just as the other terms, to the electron
correlation as described by the conditional amplitudesΦ and
Φs of the interacting and noninteracting systems respectively.
To this end we partition the total HamiltoniansHN and of the
interacting and noninteracting systems respectively.

and

It is possible to writeVrespin terms of expectation values of the
(N- 1)-Hamiltonians with respect to the conditional amplitudes.
When the reference electron is at position 1, we may define as
the “energy” of the (N - 1)-electron system described by the
conditional amplitudeΦ the expectation value ofHN-1 with
respect toΦ

which will, according to the variation theorem, at all positions
1 be higher than the ground state energy of the (N- 1)-electron
system. The definite positive potentialVN-1 is defined as this
difference

It is known that asymptotically, when position 1 goes to infinity,

the conditional amplitude tends to the ground state wave function
of the (N - 1)-electron system,73 so VN-1 will tend to zero at
inifinity. Similarly we may define for the noninteracting Kohn-
Sham system the analogous quantity

where it should be noted thatHs
N-1 is the Hamiltonian forN-

1 noninteracting electrons in the fieldVs that belongs to the
interactingN-electron ground state density. Due to the simple
one-electron nature ofHs

N-1 and the one-determinantal form
of Φs it is possible to expressVsN-1 in terms of the Kohn-
Sham orbitals and orbital energies

This proves that in a closed-shell two-electron system, where
there is just one Kohn-Sham orbital,VsN-1 will be identically
zero.
It is now possible to make the identifications87,91

and

so that

Since in He and H2 VsN-1 is zero, we can interpret the response
potential directly as the energy of the “wave function”Φ
describing the remaining electrons when the reference electron
is located at position 1. In the case of H2 at large bond length,
it is clear that when the reference electron is at a position close
to one nucleus, a say, thenΦ will practically be the 1s wave
function of an electron around the H nucleus b. The energy of
Φ will be very close to the ground state energy of the H2

+

system, which will be the energy of H atom b slightly perturbed
by proton a at large distance. This explains thatVresp() VN-1)
is very small in this case (cf.Figure 3b). The fact that the energy
of Φ is a little higher than the ground state energy of H2

+ may
be understood as a lack of resonance stabilization from the
configuration with the electron at a and the bare proton b. This
stabilization will be present in the exact wave function of H2

+

but is lacking inΦ. We can also understand that for HeVN-1

is no longer negligible (Figure 3c).Φ describes in this case a
one-electron probability density around the He nucleus (Z )
+2). The Fermi hole is in this case just- 1/2F(1). If Φ would
only describe the Fermi correlation, it would correspond to an
electron density equal to half the He ground state density,
irrespective of the reference position. This is too diffuse
compared to the ground state density of the He+ ion and the
energy ofΦ would be higher than the ground state energy of
He+, yielding a constant positiveVN-1. Incoporating the
Coulomb correlation intoΦ changes the density1/2F(1) by the
Coulomb hole. According to the Coulomb hole plots of Figure
3.1c of ref 100 this makes the density even more diffuse when
the reference position is close to the nucleus, explaining the
relatively high positive value ofVN-1 close to the nucleus. When
the reference position moves outward, the Coulomb hole first
gets a polarization shape and finally changes to the contraction

Vresp(1))∫F(1′)
δVkin(1′)

δF(1)
d1′ -∫F(1′)

δVs,kin(1′)
δF(1)

d1′ +

1
2∫F(2)F(3)

r23

δ(g(2,3)- 1)

δF(1)
d2+ d3

) Vkin
resp- Vs,kin

resp + Vxc
hole,resp) Vc,kin

resp + Vxc
hole,resp (6.1)

HN ) -
1

2
∇12 + V(1)+ ∑

j)2

N 1

r1j
+ HN-1

HN-1 ) ∑
j)2

N {-
1

2
∇j2 + V(j) + ∑

k>j

N 1

rjk
} (6.2)

Hs
N ) -1

2
∇12 + Vs(1)+ Hs

N-1

Hs
N-1 ) ∑

j)2

N {-
1

2
∇j2 + Vs(j)} (6.3)

EN-1(1))∫Φ*(2...N|1)HN-1Φ(2...N|1) d2 ... dN (6.4)

VN-1(1)) EN-1(1)- E0
N-1 (6.5)

Vs
N-1(1))∫Φ*s(2...N|1)Hs

N-1Φs(2...N|1) d2 ... dN- Es
N-1

(6.6)

Vs
N-1(1)) εN - ∑

i)1

N

εi

|φi(1)|2

F(1)
(6.7)

VN-1(1)) Vkin
resp(1)+ Vxc

hole,resp (6.8)

Vs
N-1(1)) Vs,kin

resp(1) (6.9)

Vresp(1)) VN-1(1)- Vs
N-1(1) (6.10)
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behavior that reflects the more contracted density of He+

compared to1/2F(1) of ground state He.Φ describing then the
He+ ion will have an energy equal to the He+ ground state
energy, andVN-1 will be zero. The situation for H2 at Re is
clearly in between He and H2 at large bond distance.
It is interesting to consider what happens in the case of an

electron pair bond between two different nuclei. Suppose the
bond is formed between atoms A and B with ionization
potentialsIA andIB, respectively,IB > IA. In order for such a
heteronuclear diatomic molecule to dissociate into neutral atoms,
the highest doubly occupied Kohn-Sham orbital should at large
bond distances be an equal mixture of the A and B atomic
orbitals containing the unpaired electrons, since otherwise the
atoms would become charged. This problem has been discussed
by Perdew133 and Almbladh and von Barth.134 These authors
have put forward arguments that the Kohn-Sham potential has
to exhibit a positive shift

around the more electronegative atomB. This would effectively
put the highest atomic orbitals of A and B at the same energy,
allowing the required 50-50 mix in the KS highest occupied
orbital (HOMO) of the “molecule”. It is possible to show that
the behavior (6.11) of the KS potential stems from the response
part of Vs.93 Let us consider the form ofVresp(1) in the region
of the HOMOφN(1). Again we may assume, on account of
(6.7), that VsN-1 in this region is negligible, sinceφN(1)
constitutes the dominant contribution toF(1). ThereforeVresp(1)
reduces effectively toVN-1(1),

Suppose that the reference electron is in the regionΩB of
the more electronegative atom B,r1 ∈ ΩB. In this case the
conditional amplitudeΦ(2...N |1) desribes the (N- 1)-electron
system A-B+ consisting of the neutral atom A interacting with
a cation B+. This cation will not, in general, be in the ground
state of the B+ system, but ifr1 is actually at a significant
distance from the electronic cloud of B+, although still by
assumption much closer to B than to A, it has been established
by Katriel and Davidson73 that B+, in that case, tends to its
ground state. So in that case at large bond distancesR(A-B)
the energy of this system reduces to

whereE0(A) and E0(B) are the ground state energies of the
atoms A and B, respectively.Eint(A-B+) is the energy of
interaction of the atom A with the cation B+. If we allow r1 to
be in the neighborhood of the other electrons of B+, it is
necessary to take into account that the conditional amplitude
will not describe the ground state of B+. The fact that the
system described byΦ is “distorted” will correspond to an
energy rise∆E with respect to the ground state energy. We
may therefore write the energyEN-1(r1 ∈ ΩB) in general as

If R(A-B) is large andr1 is in the region of the HOMO (i.e.
not in the subvalence or core region of B), the effect of the
electron redistribution incorporated in the last term is expected
to be small. SinceIA < IB, the ground state energyE0N-1 of
the A-B+ system will correspond for largeR(A-B) to the
system A+-B of the neutral atom B interacting with the cation

A+, so thatE0N-1 is expressed as

Inserting (6.15) and (6.14) into (6.12) forVresp yields

Suppose now that the reference electron is in the regionΩA

of the less electronegative atom A,r1 ∈ ΩA. In this case the
conditional amplitude describes the (N - 1)-electron system
A+-B, disturbed around the reference position. IfR(A-B) is
large andr1 is in the region of the HOMO, this system is close
to the ground state of the cation (AB)+. As a result, only the
corresponding correction term∆E(A+-B;r1) contributes to
Vresp(r1) in this region

From (6.17) and (6.14) we can estimate the up-shift∆Vresp
around the more electronegative atom B

The leading term of (6.18) at large bond distancesR(A-B)
is just the difference of the ionization energies of atoms A and
B. This expression demonstrates that the positive buildup∆Vxc
≈ (IB-IA) has its origin in the response partVrespof Vxc or more
precisely in theVN-1 component ofVresp. It is caused by the
difference between the conditional amplitude distribution
|Φ(2...N|1|2 of (N - 1) electrons and the ground state distribu-
tion of the cation (AB)+. When r1 ∈ ΩB, the conditional
amplitude distribution corresponds to the system A-B+, while
the ground state is the cation A+-B. Thus, the conditional
amplitude, embodying the electron correlation which causes the
complete exchange-correlation hole to be located around the
reference position, leads to a “repulsive” effect onVxc in ΩB.
The KS potential at a pointr1 in the energetically favorable
region around the electronegative atom B is shifted upward by
a potential barrier of height (IB-IA), which originates fromVN-1,
to prevent a too strong localization of electrons in that region.
The terms in the second and third brackets of (6.18) provide
corrections to the leading term at largeR(A-B). The second
term represents a correction from the atom-cation interaction,
which is different for pairs A+-B and A-B+. The third term
represents a difference between the energy effects of the
redistribution of (N - 1) electrons of A+-B and A-B+ due to
the presence of the reference electron position in the outer region
of the corresponding charged atom. In other words, the first
term brings the main contribution to∆Vrespdue to the different
ionization energies of A and B, the second one brings a correc-
tion due to the different interaction of A and B with a positive
ion, and the third one brings a correction due to the different
distortions of the cations A-B+ and A+-B due to different
“response” to the proximity of the reference electron position.
All the terms in∆Vresp(6.18) tend to decrease with decreasing

electronegativity difference of atoms A and B, and turn into
zero for the homoatomic molecule A2, as they should. ForA2
the expression

∆Vs ) IB - IA (6.11)

Vresp(1)≈ VN-1(1)) EN-1(1)- E0
N-1 (6.12)

E(A-B+) ) E0(A) + E0(B) + IB + Eint(A-B+) (6.13)

EN-1(r1 ∈ ΩB) ≈ E0(A) + E0(B) + IB + Eint(A-B+) +

∆E(A-B+;r1) (6.14)

E0
N-1≈ E0(A) + E0(B) + IA + Eint(A

+-B) (6.15)

Vresp(r1 ∈ ΩB) ≈ [IB - IA] + [Eint(A-B+) - Eint(A
+-B)] +

∆E(A-B+;r1) (6.16)

Vresp(r1∈ΩA) ≈ ∆E(A+-B;r1) (6.17)

∆Vresp) Vresp(r1∈ΩB) - Vresp(r1∈ΩA)

) [IB - IA] + [Eint(A-B+) - Eint(A
+-B)] +

[∆E(A-B+;r1∈ΩB) - ∆E(A+-B;r1∈ΩA)] (6.18)

Vresp(r1) ) ∆E(A+-A;r1) (6.19)
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which is the analogue of (6.17), is valid for the HOMO region,
andVresp(r1) is expected to be small and have a flat form in this
region. This is what we have observed for the H2 molecule
above.
In Figure 6 we illustrate these points with plots ofVs for a

model heteronuclear diatomic molecule (Figure 6a) and forVresp
for LiH, BH, and H2 at the elongated distance of 5.0 bohr (Figure
6b). Following Perdew133 we construct a model diatomic

molecule from two interacting “one-dimensional hydrogen-like
atoms”. A single electron of the model “atom” is bound to the
external delta-function potentialV(x) ) - aδ(x), so that the
“atomic orbital” isφA(x) ) a1/2 exp(-a|x|) and the ionization
energyIA is a2/2. The single KS orbital of the closed-shell
system AB is constructed as the bonding orbital

Figure 6. (a) Kohn-Sham potential in a model one-dimensional diatomic two-electron molecule AB with ionization potential energy difference
IB - IA ) 0.302 au, similar to LiH; (b) response potentialsVresp for H2, LiH, and BH, all atR) 5.0 bohr; and (c) response potentialVrespand model
response potential for BH atR ) 5.0 bohr.

φ(x) ) c[xae-a|x| + xbe-b|x-l|] (6.20)
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where l is the bond length andc normalizes the total density
F(x) ) 2|φ(x)|2 to two electrons. At large distancel this
construction correctly yields the sum of the “atomic” densities
for F(x). The energyε of φ(x) is equal to minus the ionization
energy of the system, which at largel values is equal to that of
the less electronegative atom A,ε ) - a2/2.
Figure 6a represents the KS potentialVs(x) of the system AB

obtained forl ) 3, l ) 7 bohr andx * xA, x * xB by solving
the equation

for Vs(x), usingε ) - a2/2 and (6.20) forφ(x). The parameter
valuesa ) 0.63 andb ) 1.0 au were chosen in order to fit the
ionization energies of the atoms Li and H, respectively. Figure
6a clearly displays the distinct positive buildup ofVs(x) around
the more electronegative atom B. In the region between the
nucleiVs(x) has a similar shape for the two distances, stepping
up when going from A to B. In the outer region, beyond the B
“atom”, Vs(x) gradually decreases forl ) 3 au, forming a rather
sharp peak around B. Forl ) 7 au it has a much more shallow
form and forms a step with the B atom on its upper part. With
increasingl the maximum ofVs(x) approaches the valueIB -
IA ) 0.302 au.
Figure 6b shows thatVrespbecomes rather high in the 1s region

of Li and B, a feature that will be discussed below, but it also
demonstrates that in the region of the H atomVrespstays flat in
the case of H2 but clearly builds up in the case of LiH and BH.
We have been discussing the properties ofVrespin the region

of a valence electron pair, either in an atomic shell such as the
1s shell of He or in a bonding pair in a homonuclear or
heteronuclear diatomic molecule. As a last point we wish to
mention the strong step-like behavior ofVrespwhen going in an
atom from one shell to the next.78,91,92 In atoms the Fermi
correlation is much stronger than the Coulomb correlation, and

the step behavior ofVresp in atoms is caused by the response
part of the exchange potentialVx. It already shows up in an
exchange-only treatment like the optimized potential model
(OPM135-137), which seeks to obtain the best local potential to
generate orbitals that minimize the energy of a one-determinantal
wave function. The local potential contains, apart from the
external (nuclear) and electronic Coulomb potentials, an ex-
change potentialVx that consists of a hole or screening part and
a response part,

Figure 7 shows plots of the fullVx as well as the hole and
response parts for Ne and Kr, which clearly demonstrate the
step-like behavior ofVx

resp. The hole part (or Slater potential1)
is just the average over the orbital-dependent Hartree-Fock
exchange potentials for all occupied orbitals and describes the
potential of the Fermi hole,

The exchange response potential

may be simplified,92 within certain approximations, to a form

Figure 7. Step structure of the response part of the exchange potential in Ne and Kr.

1
2
d2φ(x)

dx2
+ Vs(x)φ(x) ) εφ(x) (6.21) Vx ) Vx

hole+ Vx
resp (6.22)

Vxi(1)) -
1

φ*i(1)
∑
k

N ∫f k φ*i(2)φk(2)
r12

d2φ*k(1)

Vx
hole(1)) ∑

i

N Vxi(1)|φi(1)|2

F(1)
(6.23)

Vx
resp(1)) 1

2∫F(2)F(3)
r23

δgs(2,3)

δF(1)
d2 d3 (6.24)
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first obtained by Krieger, Li, and Iafrate (KLI)137

where the weightswi for each orbital contribution|φi(1)|2/F(1)
are the difference of the expectation values over the orbitalφi
of the full exchange potentialVx and the Hartree-Fock orbital-
dependent exchange potential,

The form (6.25) of the response potential suggests a step form,
since within a given shell the total density will be dominated
by the orbital density of that shell, so|φi(1)|2/F(1) will be in
the order of 1 and the constantswi will govern the step heights.
Physically the step form of the response potential is related92

to the “jumping” behavior of the Fermi hole.100,138 When the
reference position moves inside a shell, the shape of the Fermi
hole is approximately constant and similar in shape and spatial
extent to the shell densitysmuch like we observed in the two-
electron case beforesbut when the reference position crosses
the boundary between two shells the hole “jumps” to the shape
that corresponds to the new shell. We note that the characteristic
little peaks inVx at the shell boundaries are actually built in by
the superposition of the step-likeVx

resp on the much smoother
hole potentialVx

hole. Modeling of Vx is greatly facilitated by
this observation and it has been shown78 that a satisfactory model
response potential is obtained by using the KLI form (6.25)
with the weightswi determined asK[F](µ - εi)1/2

This form of the response potential obeys requirements like
gauge invariance and proper scaling ofVx andεi

upon scaling of the density

Expression (6.27) becomes exact for the homogeneous electron
gas with

Figure 6c shows for BH at 5.0 bohr that this model response
potential does describe the high step in the 1s region of B and
also the weaker “step” in the 2s region, but it fails to describe
the positive build up around H.

7. Summary

The central tenet in this discussion of DFT has been the role
of the Kohn-Sham one-electron model as an alternative
molecular orbital theory to be clearly distinguished from
Hartree-Fock. It does not, as some semiempirical methods do,
strive to mimick Hartree-Fock as closely as possible, but it is
related to the exact solution of the many-electron problem. We
have highlighted the difference between the Kohn-Sham and

Hartree-Fock models. In particular we have stressed that the
correlation energy is defined in DFT in a different way than
traditionally in quantum chemistry. It is the difference between
the exact total energy and the energy of the Kohn-Sham
determinantal wave function built from the Kohn-Sham orbit-
als. Since the latter is necessarily higher than the Hartree-
Fock energy, the correlation energy of DFT will be larger (more
negative) than the traditional one. More importantly, however,
it will have very different components, the correlation correction
to the electron-nuclear potential energy for instance being zero
since the Kohn-Sham density is equal to the exact density.
Physically the difference between the Kohn-Sham and Har-
tree-Fock models may be understood from the fact that the
Hartree-Fock “potential” only embodies the Fermi correlation,
while the leading term in the Kohn-Sham potentialVxc is the
potential of the full correlation hole, Fermi plus Coulomb. We
have demonstrated that the fact that the effective potential of
the Kohn-Sham model incorporates the Coulomb correlation
effects is very important for the building of the correct electronic
charge distribution. The Kohn-Sham orbitals are physically
sound and may be expected to be more suitable for use in
qualitative molecular orbital theory than either Hartree-Fock
or semiempirical orbitals.
A decomposition of both the exchange-correlation energy

density εxc and the exchange-correlation potentialVxc has
demonstrated that these quantities may be related directly to
various aspects of electron correlation. The most important term
in both is the potential of the Fermi plus Coulomb hole,
Vxc
hole. Both also contain a kinetic correlation potentialVc,kin,
accounting for the differenceTc between the exact kinetic energy
and the kinetic energyTsof the Kohn-Sham orbitals. Whereas
Vxc
hole gives in a sense a static picture of the correlation,
reflecting the shape of the total hole around the reference
position,Vc,kin in a sense reflects a dynamic aspect of correlation,
being sensitive to the rate of change of the total hole when the
reference position changes. This is particularly relevant around
the bond midpoint, where the Coulomb hole, being localized
around the nucleus close to the reference position, rapidly
switches from one nucleus to the other one. There is inVxc
(but not in εxc) a third term, the response part of the Kohn-
Sham potential. Special features ofVresp, such as its typical step
behavior in atoms when going from one shell to the next and
the positive buildup around the most electronegative nucleus
in a heteronuclear molecule, have been related to the electron
correlation by using an expression forVresp in terms of the
conditional amplitudesΦ(2...N | 1) andΦs(2...N | 1) of the exact
interacting system and the Kohn-Sham system, respectively.
We finally note that the special properties of the Kohn-Sham

orbitals also make the KS determinant an interesting zero-order
approximate wave function. Although the KS determinant lacks
certain convenient properties of the HF determinant, it may be
well worth studying CI and perturbation treatments in the KS
orbital basis.
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